Abstract
We have previously shown that unsaturated fatty acids amplify platelet-derived-growth-factor (PDGF)-induced protein kinase C (PKC) activation in vascular smooth-muscle cells (VSMCs). Diacylglycerol-induced PKC activation is normally terminated by diacylglycerol kinases (DGKs). We thus hypothesized that fatty acids act by inhibiting a DGK. Fractionation of VSMC extracts demonstrated that the DGK alpha isoform was the major DGK activity present. PDGF markedly increased the DGK activity of cultured cells. An inhibitor selective for the DGK alpha isoform, R59949 [3-[2-[4-(bis-(4-fluorophenyl)methylene]piperidin-1-yl)ethyl]-2,3-dihydro-2-thioxo-4(1H)-quinazolinone], abolished the growth-factor-induced increase in DGK activity, but had little effect on basal activity. PDGF thus selectively activates DGKalpha. Epidermal growth factor and alpha-thrombin stimulated total DGK activity similarly to PDGF. Activation by epidermal growth factor was sensitive to R59949, again suggesting involvement of DGKalpha. However, the alpha-thrombin-induced activity was unaffected by this agent. Unsaturated fatty acids inhibited growth-factor-induced DGKalpha activation, but had no effect on basal activity. Fatty acids also amplified the PDGF-induced increase in cell diacylglycerol content. These results indicate that inhibition of DGKalpha contributes to fatty-acid-induced amplification of PKC activation. Increased levels of fatty acids in diabetes may thus contribute to chronic PKC activation associated with this disorder.
Full Text
The Full Text of this article is available as a PDF (188.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexiewicz J. M., Kumar D., Smogorzewski M., Klin M., Massry S. G. Polymorphonuclear leukocytes in non-insulin-dependent diabetes mellitus: abnormalities in metabolism and function. Ann Intern Med. 1995 Dec 15;123(12):919–924. doi: 10.7326/0003-4819-123-12-199512150-00004. [DOI] [PubMed] [Google Scholar]
- Bursell S. E., Takagi C., Clermont A. C., Takagi H., Mori F., Ishii H., King G. L. Specific retinal diacylglycerol and protein kinase C beta isoform modulation mimics abnormal retinal hemodynamics in diabetic rats. Invest Ophthalmol Vis Sci. 1997 Dec;38(13):2711–2720. [PubMed] [Google Scholar]
- Derubertis F. R., Craven P. A. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes. 1994 Jan;43(1):1–8. doi: 10.2337/diab.43.1.1. [DOI] [PubMed] [Google Scholar]
- Erickson R. W., Langel-Peveri P., Traynor-Kaplan A. E., Heyworth P. G., Curnutte J. T. Activation of human neutrophil NADPH oxidase by phosphatidic acid or diacylglycerol in a cell-free system. Activity of diacylglycerol is dependent on its conversion to phosphatidic acid. J Biol Chem. 1999 Aug 6;274(32):22243–22250. doi: 10.1074/jbc.274.32.22243. [DOI] [PubMed] [Google Scholar]
- Fenton J. W., 2nd, Fasco M. J., Stackrow A. B. Human thrombins. Production, evaluation, and properties of alpha-thrombin. J Biol Chem. 1977 Jun 10;252(11):3587–3598. [PubMed] [Google Scholar]
- Flores I., Casaseca T., Martinez-A C., Kanoh H., Merida I. Phosphatidic acid generation through interleukin 2 (IL-2)-induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation. J Biol Chem. 1996 Apr 26;271(17):10334–10340. doi: 10.1074/jbc.271.17.10334. [DOI] [PubMed] [Google Scholar]
- Gamberucci A., Fulceri R., Benedetti A. Inhibition of store-dependent capacitative Ca2+ influx by unsaturated fatty acids. Cell Calcium. 1997 May;21(5):375–385. doi: 10.1016/s0143-4160(97)90031-2. [DOI] [PubMed] [Google Scholar]
- Graber R., Sumida C., Nunez E. A. Fatty acids and cell signal transduction. J Lipid Mediat Cell Signal. 1994 Mar;9(2):91–116. [PubMed] [Google Scholar]
- Hempel A., Maasch C., Heintze U., Lindschau C., Dietz R., Luft F. C., Haller H. High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ Res. 1997 Sep;81(3):363–371. doi: 10.1161/01.res.81.3.363. [DOI] [PubMed] [Google Scholar]
- Houssa B., de Widt J., Kranenburg O., Moolenaar W. H., van Blitterswijk W. J. Diacylglycerol kinase theta binds to and is negatively regulated by active RhoA. J Biol Chem. 1999 Mar 12;274(11):6820–6822. doi: 10.1074/jbc.274.11.6820. [DOI] [PubMed] [Google Scholar]
- Inui H., Kondo T., Konishi F., Kitami Y., Inagami T. Participation of diacylglycerol kinase in mitogenic signal transduction induced by platelet-derived growth factor in vascular smooth muscle cells. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1338–1344. doi: 10.1006/bbrc.1994.2812. [DOI] [PubMed] [Google Scholar]
- Ishii H., Jirousek M. R., Koya D., Takagi C., Xia P., Clermont A., Bursell S. E., Kern T. S., Ballas L. M., Heath W. F. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996 May 3;272(5262):728–731. doi: 10.1126/science.272.5262.728. [DOI] [PubMed] [Google Scholar]
- Ishitoya J., Yamakawa A., Takenawa T. Translocation of diacylglycerol kinase in response to chemotactic peptide and phorbol ester in neutrophils. Biochem Biophys Res Commun. 1987 Apr 29;144(2):1025–1030. doi: 10.1016/s0006-291x(87)80066-9. [DOI] [PubMed] [Google Scholar]
- Jiang Y., Qian W., Hawes J. W., Walsh J. P. A domain with homology to neuronal calcium sensors is required for calcium-dependent activation of diacylglycerol kinase alpha. J Biol Chem. 2000 Nov 3;275(44):34092–34099. doi: 10.1074/jbc.M004914200. [DOI] [PubMed] [Google Scholar]
- Jiang Y., Sakane F., Kanoh H., Walsh J. P. Selectivity of the diacylglycerol kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2, 3-dihydro-2-thioxo-4(1H)quinazolinone (R59949) among diacylglycerol kinase subtypes. Biochem Pharmacol. 2000 Apr 1;59(7):763–772. doi: 10.1016/s0006-2952(99)00395-0. [DOI] [PubMed] [Google Scholar]
- Kanoh H., Iwata T., Ono T., Suzuki T. Immunological characterization of sn-1,2-diacylglycerol and sn-2-monoacylglycerol kinase from pig brain. J Biol Chem. 1986 Apr 25;261(12):5597–5602. [PubMed] [Google Scholar]
- Kanoh H., Yamada K., Sakane F., Imaizumi T. Phosphorylation of diacylglycerol kinase in vitro by protein kinase C. Biochem J. 1989 Mar 1;258(2):455–462. doi: 10.1042/bj2580455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katan M. Families of phosphoinositide-specific phospholipase C: structure and function. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):5–17. doi: 10.1016/s0005-2760(98)00125-8. [DOI] [PubMed] [Google Scholar]
- Kelleher J. A., Sun G. Y. Effects of free fatty acids and acyl-coenzyme A on diacylglycerol kinase in rat brain. J Neurosci Res. 1989 May;23(1):87–94. doi: 10.1002/jnr.490230112. [DOI] [PubMed] [Google Scholar]
- Koya D., King G. L. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998 Jun;47(6):859–866. doi: 10.2337/diabetes.47.6.859. [DOI] [PubMed] [Google Scholar]
- Koya D., Lee I. K., Ishii H., Kanoh H., King G. L. Prevention of glomerular dysfunction in diabetic rats by treatment with d-alpha-tocopherol. J Am Soc Nephrol. 1997 Mar;8(3):426–435. doi: 10.1681/ASN.V83426. [DOI] [PubMed] [Google Scholar]
- Lee I. K., Koya D., Ishi H., Kanoh H., King G. L. d-Alpha-tocopherol prevents the hyperglycemia induced activation of diacylglycerol (DAG)-protein kinase C (PKC) pathway in vascular smooth muscle cell by an increase of DAG kinase activity. Diabetes Res Clin Pract. 1999 Sep;45(2-3):183–190. doi: 10.1016/s0168-8227(99)00048-0. [DOI] [PubMed] [Google Scholar]
- Lemaitre R. N., King W. C., MacDonald M. L., Glomset J. A. Distribution of distinct arachidonoyl-specific and non-specific isoenzymes of diacylglycerol kinase in baboon (Papio cynocephalus) tissues. Biochem J. 1990 Feb 15;266(1):291–299. doi: 10.1042/bj2660291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu X., Yang X. Y., Howard R. L., Walsh J. P. Fatty acids modulate protein kinase C activation in porcine vascular smooth muscle cells independently of their effect on de novo diacylglycerol synthesis. Diabetologia. 2000 Sep;43(9):1136–1144. doi: 10.1007/s001250051504. [DOI] [PubMed] [Google Scholar]
- MacDonald M. L., Mack K. F., Richardson C. N., Glomset J. A. Regulation of diacylglycerol kinase reaction in Swiss 3T3 cells. Increased phosphorylation of endogenous diacylglycerol and decreased phosphorylation of didecanoylglycerol in response to platelet-derived growth factor. J Biol Chem. 1988 Jan 25;263(3):1575–1583. [PubMed] [Google Scholar]
- Maroney A. C., Macara I. G. Phorbol ester-induced translocation of diacylglycerol kinase from the cytosol to the membrane in Swiss 3T3 fibroblasts. J Biol Chem. 1989 Feb 15;264(5):2537–2544. [PubMed] [Google Scholar]
- Massry S. G., Smogorzewski M. Role of elevated cytosolic calcium in the pathogenesis of complications in diabetes mellitus. Miner Electrolyte Metab. 1997;23(3-6):253–260. [PubMed] [Google Scholar]
- Montgomery R. B., Moscatello D. K., Wong A. J., Stahl W. L. Epidermal growth factor receptor stimulation of diacylglycerol kinase. Biochem Biophys Res Commun. 1997 Mar 6;232(1):111–116. doi: 10.1006/bbrc.1997.6237. [DOI] [PubMed] [Google Scholar]
- Nobe K., Ohata H., Momose K. Activation of diacylglycerol kinase by carbachol in guinea pig taenia coli. Biochem Pharmacol. 1994 Nov 29;48(11):2005–2014. doi: 10.1016/0006-2952(94)90499-5. [DOI] [PubMed] [Google Scholar]
- Nobe K., Ohata H., Momose K. Receptor-mediated diacylglycerol kinase translocation dependent on both transient increase in the intracellular calcium concentration and modification by protein kinase C. Biochem Pharmacol. 1997 Jun 1;53(11):1683–1694. doi: 10.1016/s0006-2952(97)82454-9. [DOI] [PubMed] [Google Scholar]
- Nobe K., Sakai Y., Momose K. Alternations of diacylglycerol kinase in streptozotocin-induced diabetic rats. Cell Signal. 1998 Jul;10(7):465–471. doi: 10.1016/s0898-6568(97)00172-1. [DOI] [PubMed] [Google Scholar]
- Ohanian J., Heagerty A. M. Membrane-associated diacylglycerol kinase activity is increased by noradrenaline, but not by angiotensin II, in arterial smooth muscle. Biochem J. 1994 May 15;300(Pt 1):51–56. doi: 10.1042/bj3000051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
- Pugliese G., Pricci F., Pugliese F., Mene P., Lenti L., Andreani D., Galli G., Casini A., Bianchi S., Rotella C. M. Mechanisms of glucose-enhanced extracellular matrix accumulation in rat glomerular mesangial cells. Diabetes. 1994 Mar;43(3):478–490. doi: 10.2337/diab.43.3.478. [DOI] [PubMed] [Google Scholar]
- Pérez F. R., Camiña J. P., Zugaza J. L., Lage M., Casabiell X., Casanueva F. F. cis-FFA do not alter membrane depolarization but block Ca2+ influx and GH secretion in KCl-stimulated somatotroph cells. Suggestion for a direct cis-FFA perturbation of the Ca2+ channel opening. Biochim Biophys Acta. 1997 Oct 23;1329(2):269–277. doi: 10.1016/s0005-2736(97)00111-9. [DOI] [PubMed] [Google Scholar]
- Rao K. V., Vaidyanathan V. V., Sastry P. S. Diacylglycerol kinase is stimulated by arachidonic acid in neural membranes. J Neurochem. 1994 Oct;63(4):1454–1459. doi: 10.1046/j.1471-4159.1994.63041454.x. [DOI] [PubMed] [Google Scholar]
- Reaven G. M., Hollenbeck C., Jeng C. Y., Wu M. S., Chen Y. D. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988 Aug;37(8):1020–1024. doi: 10.2337/diab.37.8.1020. [DOI] [PubMed] [Google Scholar]
- STERN I., SHAPIRO B. A rapid and simple method for the determination of esterified fatty acids and for total fatty acids in blood. J Clin Pathol. 1953 May;6(2):158–160. doi: 10.1136/jcp.6.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakane F., Kanoh H. Molecules in focus: diacylglycerol kinase. Int J Biochem Cell Biol. 1997 Oct;29(10):1139–1143. doi: 10.1016/s1357-2725(97)00037-x. [DOI] [PubMed] [Google Scholar]
- Sanders C. R., 2nd, Czerski L., Vinogradova O., Badola P., Song D., Smith S. O. Escherichia coli diacylglycerol kinase is an alpha-helical polytopic membrane protein and can spontaneously insert into preformed lipid vesicles. Biochemistry. 1996 Jul 2;35(26):8610–8618. doi: 10.1021/bi9604892. [DOI] [PubMed] [Google Scholar]
- Schaap D., van der Wal J., van Blitterswijk W. J., van der Bend R. L., Ploegh H. L. Diacylglycerol kinase is phosphorylated in vivo upon stimulation of the epidermal growth factor receptor and serine/threonine kinases, including protein kinase C-epsilon. Biochem J. 1993 Feb 1;289(Pt 3):875–881. doi: 10.1042/bj2890875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirai Y., Segawa S., Kuriyama M., Goto K., Sakai N., Saito N. Subtype-specific translocation of diacylglycerol kinase alpha and gamma and its correlation with protein kinase C. J Biol Chem. 2000 Aug 11;275(32):24760–24766. doi: 10.1074/jbc.M003151200. [DOI] [PubMed] [Google Scholar]
- Söling H. D., Fest W., Schmidt T., Esselmann H., Bachmann V. Signal transmission in exocrine cells is associated with rapid activity changes of acyltransferases and diacylglycerol kinase due to reversible protein phosphorylation. J Biol Chem. 1989 Jun 25;264(18):10643–10648. [PubMed] [Google Scholar]
- Tang W., Bunting M., Zimmerman G. A., McIntyre T. M., Prescott S. M. Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J Biol Chem. 1996 Apr 26;271(17):10237–10241. [PubMed] [Google Scholar]
- Topham M. K., Bunting M., Zimmerman G. A., McIntyre T. M., Blackshear P. J., Prescott S. M. Protein kinase C regulates the nuclear localization of diacylglycerol kinase-zeta. Nature. 1998 Aug 13;394(6694):697–700. doi: 10.1038/29337. [DOI] [PubMed] [Google Scholar]
- Topham M. K., Prescott S. M. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem. 1999 Apr 23;274(17):11447–11450. doi: 10.1074/jbc.274.17.11447. [DOI] [PubMed] [Google Scholar]
- Tran K., Proulx P. R., Chan A. C. Vitamin E suppresses diacylglycerol (DAG) level in thrombin-stimulated endothelial cells through an increase of DAG kinase activity. Biochim Biophys Acta. 1994 May 13;1212(2):193–202. doi: 10.1016/0005-2760(94)90253-4. [DOI] [PubMed] [Google Scholar]
- Wada I., Kai M., Imai S., Sakane F., Kanoh H. Translocation of diacylglycerol kinase alpha to the nuclear matrix of rat thymocytes and peripheral T-lymphocytes. FEBS Lett. 1996 Sep 9;393(1):48–52. doi: 10.1016/0014-5793(96)00857-5. [DOI] [PubMed] [Google Scholar]
- Wakelam M. J. Diacylglycerol--when is it an intracellular messenger? Biochim Biophys Acta. 1998 Dec 8;1436(1-2):117–126. doi: 10.1016/s0005-2760(98)00123-4. [DOI] [PubMed] [Google Scholar]
- Walsh J. P., Bell R. M. Diacylglycerol kinase from Escherichia coli. Methods Enzymol. 1992;209:153–162. doi: 10.1016/0076-6879(92)09019-y. [DOI] [PubMed] [Google Scholar]
- Walsh J. P., Bell R. M. sn-1,2-Diacylglycerol kinase of Escherichia coli. Mixed micellar analysis of the phospholipid cofactor requirement and divalent cation dependence. J Biol Chem. 1986 May 15;261(14):6239–6247. [PubMed] [Google Scholar]
- Walsh J. P., Suen R., Lemaitre R. N., Glomset J. A. Arachidonoyl-diacylglycerol kinase from bovine testis. Purification and properties. J Biol Chem. 1994 Aug 19;269(33):21155–21164. [PubMed] [Google Scholar]
- Wen J., Chen X., Bowie J. U. Exploring the allowed sequence space of a membrane protein. Nat Struct Biol. 1996 Feb;3(2):141–148. doi: 10.1038/nsb0296-141. [DOI] [PubMed] [Google Scholar]
- Wolf B. A., Williamson J. R., Easom R. A., Chang K., Sherman W. R., Turk J. Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest. 1991 Jan;87(1):31–38. doi: 10.1172/JCI114988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K., Sakane F., Imai S., Takemura H. Sphingosine activates cellular diacylglycerol kinase in intact Jurkat cells, a human T-cell line. Biochim Biophys Acta. 1993 Sep 8;1169(3):217–224. [PubMed] [Google Scholar]
- Yamada K., Sakane F. The different effects of sphingosine on diacylglycerol kinase isozymes in Jurkat cells, a human T-cell line. Biochim Biophys Acta. 1993 Sep 8;1169(3):211–216. [PubMed] [Google Scholar]
- Zhu X., Eichberg J. A myo-inositol pool utilized for phosphatidylinositol synthesis is depleted in sciatic nerve from rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9818–9822. doi: 10.1073/pnas.87.24.9818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Blitterswijk W. J., Houssa B. Properties and functions of diacylglycerol kinases. Cell Signal. 2000 Oct;12(9-10):595–605. doi: 10.1016/s0898-6568(00)00113-3. [DOI] [PubMed] [Google Scholar]
- van Dijk M. C., van Blitterswijk W. J. Lipid metabolism in fibroblast growth factor-stimulated L6 myoblasts: a receptor mutation (Y766F) abrogates phospholipase D and diacylglycerol kinase activities. Biochim Biophys Acta. 1998 Mar 30;1391(2):273–279. doi: 10.1016/s0005-2760(98)00016-2. [DOI] [PubMed] [Google Scholar]
- van der Bend R. L., de Widt J., Hilkmann H., van Blitterswijk W. J. Diacylglycerol kinase in receptor-stimulated cells converts its substrate in a topologically restricted manner. J Biol Chem. 1994 Feb 11;269(6):4098–4102. [PubMed] [Google Scholar]