Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 1;357(Pt 1):289–296. doi: 10.1042/0264-6021:3570289

Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

O M Andersen 1, H H Petersen 1, C Jacobsen 1, S K Moestrup 1, M Etzerodt 1, P A Andreasen 1, H C Thøgersen 1
PMCID: PMC1221954  PMID: 11415462

Abstract

The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

Full Text

The Full Text of this article is available as a PDF (232.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. M., Christensen L. L., Christensen P. A., Sørensen E. S., Jacobsen C., Moestrup S. K., Etzerodt M., Thogersen H. C. Identification of the minimal functional unit in the low density lipoprotein receptor-related protein for binding the receptor-associated protein (RAP). A conserved acidic residue in the complement-type repeats is important for recognition of RAP. J Biol Chem. 2000 Jul 14;275(28):21017–21024. doi: 10.1074/jbc.M000507200. [DOI] [PubMed] [Google Scholar]
  2. Andersen O. M., Christensen P. A., Christensen L. L., Jacobsen C., Moestrup S. K., Etzerodt M., Thogersen H. C. Specific binding of alpha-macroglobulin to complement-type repeat CR4 of the low-density lipoprotein receptor-related protein. Biochemistry. 2000 Sep 5;39(35):10627–10633. doi: 10.1021/bi000498h. [DOI] [PubMed] [Google Scholar]
  3. Andreasen P. A., Egelund R., Petersen H. H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci. 2000 Jan 20;57(1):25–40. doi: 10.1007/s000180050497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andreasen P. A., Kjøller L., Christensen L., Duffy M. J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997 Jul 3;72(1):1–22. doi: 10.1002/(sici)1097-0215(19970703)72:1<1::aid-ijc1>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  5. Argraves K. M., Battey F. D., MacCalman C. D., McCrae K. R., Gåfvels M., Kozarsky K. F., Chappell D. A., Strauss J. F., 3rd, Strickland D. K. The very low density lipoprotein receptor mediates the cellular catabolism of lipoprotein lipase and urokinase-plasminogen activator inhibitor type I complexes. J Biol Chem. 1995 Nov 3;270(44):26550–26557. doi: 10.1074/jbc.270.44.26550. [DOI] [PubMed] [Google Scholar]
  6. Bieri S., Atkins A. R., Lee H. T., Winzor D. J., Smith R., Kroon P. A. Folding, calcium binding, and structural characterization of a concatemer of the first and second ligand-binding modules of the low-density lipoprotein receptor. Biochemistry. 1998 Aug 4;37(31):10994–11002. doi: 10.1021/bi980452c. [DOI] [PubMed] [Google Scholar]
  7. Brown S. D., Twells R. C., Hey P. J., Cox R. D., Levy E. R., Soderman A. R., Metzker M. L., Caskey C. T., Todd J. A., Hess J. F. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun. 1998 Jul 30;248(3):879–888. doi: 10.1006/bbrc.1998.9061. [DOI] [PubMed] [Google Scholar]
  8. Chen W. J., Goldstein J. L., Brown M. S. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem. 1990 Feb 25;265(6):3116–3123. [PubMed] [Google Scholar]
  9. Conese M., Nykjaer A., Petersen C. M., Cremona O., Pardi R., Andreasen P. A., Gliemann J., Christensen E. I., Blasi F. alpha-2 Macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J Cell Biol. 1995 Dec;131(6 Pt 1):1609–1622. doi: 10.1083/jcb.131.6.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daly N. L., Djordjevic J. T., Kroon P. A., Smith R. Three-dimensional structure of the second cysteine-rich repeat from the human low-density lipoprotein receptor. Biochemistry. 1995 Nov 7;34(44):14474–14481. doi: 10.1021/bi00044a025. [DOI] [PubMed] [Google Scholar]
  11. Daly N. L., Scanlon M. J., Djordjevic J. T., Kroon P. A., Smith R. Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6334–6338. doi: 10.1073/pnas.92.14.6334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dolmer K., Huang W., Gettins P. G. NMR solution structure of complement-like repeat CR3 from the low density lipoprotein receptor-related protein. Evidence for specific binding to the receptor binding domain of human alpha(2)-macroglobulin. J Biol Chem. 2000 Feb 4;275(5):3264–3269. doi: 10.1074/jbc.275.5.3264. [DOI] [PubMed] [Google Scholar]
  13. Dong Y., Lathrop W., Weaver D., Qiu Q., Cini J., Bertolini D., Chen D. Molecular cloning and characterization of LR3, a novel LDL receptor family protein with mitogenic activity. Biochem Biophys Res Commun. 1998 Oct 29;251(3):784–790. doi: 10.1006/bbrc.1998.9545. [DOI] [PubMed] [Google Scholar]
  14. Ellgaard L., Holtet T. L., Nielsen P. R., Etzerodt M., Gliemann J., Thøgersen H. C. Dissection of the domain architecture of the alpha2macroglobulin-receptor-associated protein. Eur J Biochem. 1997 Mar 1;244(2):544–551. doi: 10.1111/j.1432-1033.1997.00544.x. [DOI] [PubMed] [Google Scholar]
  15. Fass D., Blacklow S., Kim P. S., Berger J. M. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature. 1997 Aug 14;388(6643):691–693. doi: 10.1038/41798. [DOI] [PubMed] [Google Scholar]
  16. Gliemann J. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol Chem. 1998 Aug-Sep;379(8-9):951–964. [PubMed] [Google Scholar]
  17. Heegaard C. W., Simonsen A. C., Oka K., Kjøller L., Christensen A., Madsen B., Ellgaard L., Chan L., Andreasen P. A. Very low density lipoprotein receptor binds and mediates endocytosis of urokinase-type plasminogen activator-type-1 plasminogen activator inhibitor complex. J Biol Chem. 1995 Sep 1;270(35):20855–20861. doi: 10.1074/jbc.270.35.20855. [DOI] [PubMed] [Google Scholar]
  18. Herz J., Beffert U. Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nat Rev Neurosci. 2000 Oct;1(1):51–58. doi: 10.1038/35036221. [DOI] [PubMed] [Google Scholar]
  19. Herz J., Clouthier D. E., Hammer R. E. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell. 1992 Oct 30;71(3):411–421. doi: 10.1016/0092-8674(92)90511-a. [DOI] [PubMed] [Google Scholar]
  20. Herz J., Hamann U., Rogne S., Myklebost O., Gausepohl H., Stanley K. K. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988 Dec 20;7(13):4119–4127. doi: 10.1002/j.1460-2075.1988.tb03306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hey P. J., Twells R. C., Phillips M. S., Yusuke Nakagawa, Brown S. D., Kawaguchi Y., Cox R., Guochun Xie, Dugan V., Hammond H. Cloning of a novel member of the low-density lipoprotein receptor family. Gene. 1998 Aug 17;216(1):103–111. doi: 10.1016/s0378-1119(98)00311-4. [DOI] [PubMed] [Google Scholar]
  22. Hjälm G., Murray E., Crumley G., Harazim W., Lundgren S., Onyango I., Ek B., Larsson M., Juhlin C., Hellman P. Cloning and sequencing of human gp330, a Ca(2+)-binding receptor with potential intracellular signaling properties. Eur J Biochem. 1996 Jul 1;239(1):132–137. doi: 10.1111/j.1432-1033.1996.0132u.x. [DOI] [PubMed] [Google Scholar]
  23. Horn I. R., van den Berg B. M., Moestrup S. K., Pannekoek H., van Zonneveld A. J. Plasminogen activator inhibitor 1 contains a cryptic high affinity receptor binding site that is exposed upon complex formation with tissue-type plasminogen activator. Thromb Haemost. 1998 Nov;80(5):822–828. [PubMed] [Google Scholar]
  24. Horn I. R., van den Berg B. M., van der Meijden P. Z., Pannekoek H., van Zonneveld A. J. Molecular analysis of ligand binding to the second cluster of complement-type repeats of the low density lipoprotein receptor-related protein. Evidence for an allosteric component in receptor-associated protein-mediated inhibition of ligand binding. J Biol Chem. 1997 May 23;272(21):13608–13613. doi: 10.1074/jbc.272.21.13608. [DOI] [PubMed] [Google Scholar]
  25. Howell B. W., Lanier L. M., Frank R., Gertler F. B., Cooper J. A. The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol Cell Biol. 1999 Jul;19(7):5179–5188. doi: 10.1128/mcb.19.7.5179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huang W., Dolmer K., Gettins P. G. NMR solution structure of complement-like repeat CR8 from the low density lipoprotein receptor-related protein. J Biol Chem. 1999 May 14;274(20):14130–14136. doi: 10.1074/jbc.274.20.14130. [DOI] [PubMed] [Google Scholar]
  27. Jacobsen L., Madsen P., Moestrup S. K., Lund A. H., Tommerup N., Nykjaer A., Sottrup-Jensen L., Gliemann J., Petersen C. M. Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein. J Biol Chem. 1996 Dec 6;271(49):31379–31383. doi: 10.1074/jbc.271.49.31379. [DOI] [PubMed] [Google Scholar]
  28. Jensen P. H., Christensen E. I., Ebbesen P., Gliemann J., Andreasen P. A. Lysosomal degradation of receptor-bound urokinase-type plasminogen activator is enhanced by its inhibitors in human trophoblastic choriocarcinoma cells. Cell Regul. 1990 Dec;1(13):1043–1056. doi: 10.1091/mbc.1.13.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kim D. H., Iijima H., Goto K., Sakai J., Ishii H., Kim H. J., Suzuki H., Kondo H., Saeki S., Yamamoto T. Human apolipoprotein E receptor 2. A novel lipoprotein receptor of the low density lipoprotein receptor family predominantly expressed in brain. J Biol Chem. 1996 Apr 5;271(14):8373–8380. doi: 10.1074/jbc.271.14.8373. [DOI] [PubMed] [Google Scholar]
  30. Kim D. H., Inagaki Y., Suzuki T., Ioka R. X., Yoshioka S. Z., Magoori K., Kang M. J., Cho Y., Nakano A. Z., Liu Q. A new low density lipoprotein receptor related protein, LRP5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein E. J Biochem. 1998 Dec 1;124(6):1072–1076. doi: 10.1093/oxfordjournals.jbchem.a022223. [DOI] [PubMed] [Google Scholar]
  31. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  32. Kounnas M. Z., Henkin J., Argraves W. S., Strickland D. K. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates cellular uptake of pro-urokinase. J Biol Chem. 1993 Oct 15;268(29):21862–21867. [PubMed] [Google Scholar]
  33. Kristensen T., Moestrup S. K., Gliemann J., Bendtsen L., Sand O., Sottrup-Jensen L. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the alpha 2-macroglobulin receptor. FEBS Lett. 1990 Dec 10;276(1-2):151–155. doi: 10.1016/0014-5793(90)80530-v. [DOI] [PubMed] [Google Scholar]
  34. Moestrup S. K., Gliemann J. Purification of the rat hepatic alpha 2-macroglobulin receptor as an approximately 440-kDa single chain protein. J Biol Chem. 1989 Sep 15;264(26):15574–15577. [PubMed] [Google Scholar]
  35. Moestrup S. K., Holtet T. L., Etzerodt M., Thøgersen H. C., Nykjaer A., Andreasen P. A., Rasmussen H. H., Sottrup-Jensen L., Gliemann J. Alpha 2-macroglobulin-proteinase complexes, plasminogen activator inhibitor type-1-plasminogen activator complexes, and receptor-associated protein bind to a region of the alpha 2-macroglobulin receptor containing a cluster of eight complement-type repeats. J Biol Chem. 1993 Jun 25;268(18):13691–13696. [PubMed] [Google Scholar]
  36. Moestrup S. K., Kaltoft K., Sottrup-Jensen L., Gliemann J. The human alpha 2-macroglobulin receptor contains high affinity calcium binding sites important for receptor conformation and ligand recognition. J Biol Chem. 1990 Jul 25;265(21):12623–12628. [PubMed] [Google Scholar]
  37. Moestrup S. K., Nielsen S., Andreasen P., Jørgensen K. E., Nykjaer A., Røigaard H., Gliemann J., Christensen E. I. Epithelial glycoprotein-330 mediates endocytosis of plasminogen activator-plasminogen activator inhibitor type-1 complexes. J Biol Chem. 1993 Aug 5;268(22):16564–16570. [PubMed] [Google Scholar]
  38. Moestrup S. K. The alpha 2-macroglobulin receptor and epithelial glycoprotein-330: two giant receptors mediating endocytosis of multiple ligands. Biochim Biophys Acta. 1994 Jun 29;1197(2):197–213. doi: 10.1016/0304-4157(94)90005-1. [DOI] [PubMed] [Google Scholar]
  39. North C. L., Blacklow S. C. Solution structure of the sixth LDL-A module of the LDL receptor. Biochemistry. 2000 Mar 14;39(10):2564–2571. doi: 10.1021/bi992087a. [DOI] [PubMed] [Google Scholar]
  40. North C. L., Blacklow S. C. Structural independence of ligand-binding modules five and six of the LDL receptor. Biochemistry. 1999 Mar 30;38(13):3926–3935. doi: 10.1021/bi9821622. [DOI] [PubMed] [Google Scholar]
  41. Nykjaer A., Conese M., Christensen E. I., Olson D., Cremona O., Gliemann J., Blasi F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J. 1997 May 15;16(10):2610–2620. doi: 10.1093/emboj/16.10.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nykjaer A., Kjøller L., Cohen R. L., Lawrence D. A., Garni-Wagner B. A., Todd R. F., 3rd, van Zonneveld A. J., Gliemann J., Andreasen P. A. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. Evidence that the urokinase receptor protects pro-urokinase against binding to the endocytic receptor. J Biol Chem. 1994 Oct 14;269(41):25668–25676. [PubMed] [Google Scholar]
  43. Nykjaer A., Petersen C. M., Møller B., Jensen P. H., Moestrup S. K., Holtet T. L., Etzerodt M., Thøgersen H. C., Munch M., Andreasen P. A. Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem. 1992 Jul 25;267(21):14543–14546. [PubMed] [Google Scholar]
  44. Orth K., Madison E. L., Gething M. J., Sambrook J. F., Herz J. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7422–7426. doi: 10.1073/pnas.89.16.7422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rodenburg K. W., Kjoller L., Petersen H. H., Andreasen P. A. Binding of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex to the endocytosis receptors alpha2-macroglobulin receptor/low-density lipoprotein receptor-related protein and very-low-density lipoprotein receptor involves basic residues in the inhibitor. Biochem J. 1998 Jan 1;329(Pt 1):55–63. doi: 10.1042/bj3290055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Russell D. W., Schneider W. J., Yamamoto T., Luskey K. L., Brown M. S., Goldstein J. L. Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell. 1984 Jun;37(2):577–585. doi: 10.1016/0092-8674(84)90388-x. [DOI] [PubMed] [Google Scholar]
  47. Saito A., Pietromonaco S., Loo A. K., Farquhar M. G. Complete cloning and sequencing of rat gp330/"megalin," a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9725–9729. doi: 10.1073/pnas.91.21.9725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Springer T. A. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. J Mol Biol. 1998 Nov 6;283(4):837–862. doi: 10.1006/jmbi.1998.2115. [DOI] [PubMed] [Google Scholar]
  49. Stefansson S., Muhammad S., Cheng X. F., Battey F. D., Strickland D. K., Lawrence D. A. Plasminogen activator inhibitor-1 contains a cryptic high affinity binding site for the low density lipoprotein receptor-related protein. J Biol Chem. 1998 Mar 13;273(11):6358–6366. doi: 10.1074/jbc.273.11.6358. [DOI] [PubMed] [Google Scholar]
  50. Takahashi S., Kawarabayasi Y., Nakai T., Sakai J., Yamamoto T. Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9252–9256. doi: 10.1073/pnas.89.19.9252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Webb J. C., Patel D. D., Jones M. D., Knight B. L., Soutar A. K. Characterization and tissue-specific expression of the human 'very low density lipoprotein (VLDL) receptor' mRNA. Hum Mol Genet. 1994 Apr;3(4):531–537. doi: 10.1093/hmg/3.4.531. [DOI] [PubMed] [Google Scholar]
  52. Willnow T. E., Nykjaer A., Herz J. Lipoprotein receptors: new roles for ancient proteins. Nat Cell Biol. 1999 Oct;1(6):E157–E162. doi: 10.1038/14109. [DOI] [PubMed] [Google Scholar]
  53. Willnow T. E. The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J Mol Med (Berl) 1999 Mar;77(3):306–315. doi: 10.1007/s001090050356. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES