Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):329–342. doi: 10.1042/0264-6021:3570329

Neuroendocrine secretory protein 7B2: structure, expression and functions.

M Mbikay 1, N G Seidah 1, M Chrétien 1
PMCID: PMC1221959  PMID: 11439082

Abstract

7B2 is an acidic protein residing in the secretory granules of neuroendocrine cells. Its sequence has been elucidated in many phyla and species. It shows high similarity among mammals. A Pro-Pro-Asn-Pro-Cys-Pro polyproline motif is its most conserved feature, being carried by both vertebrate and invertebrate sequences. It is biosynthesized as a precursor protein that is cleaved into an N-terminal fragment and a C-terminal peptide. In neuroendocrine cells, 7B2 functions as a specific chaperone for the proprotein convertase (PC) 2. Through the sequence around its Pro-Pro-Asn-Pro-Cys-Pro motif, it binds to an inactive proPC2 and facilitates its transport from the endoplasmic reticulum to later compartments of the secretory pathway where the zymogen is proteolytically matured and activated. Its C-terminal peptide can inhibit PC2 in vitro and may contribute to keep the enzyme transiently inactive in vivo. The PC2-7B2 model defines a new neuroendocrine paradigm whereby proteolytic activation of prohormones and proneuropeptides in the secretory pathway is spatially and temporally regulated by the dynamics of interactions between converting enzymes and their binding proteins. Interestingly, unlike PC2-null mice, which are viable, 7B2-null mutants die early in life from Cushing's disease due to corticotropin ('ACTH') hypersecretion by the neurointermediate lobe, suggesting a possible involvement of 7B2 in secretory granule formation and in secretion regulation. The mechanism of this regulation is yet to be elucidated. 7B2 has been shown to be a good marker of several neuroendocrine cell dysfunctions in humans. The possibility that anomalies in its structure and expression could be aetiological causes of some of these dysfunctions warrants investigation.

Full Text

The Full Text of this article is available as a PDF (401.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. D., VanSlyke J. K., Thulin C. D., Jean F., Thomas G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J. 1997 Apr 1;16(7):1508–1518. doi: 10.1093/emboj/16.7.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apletalina E. V., Juliano M. A., Juliano L., Lindberg I. Structure-function analysis of the 7B2 CT peptide. Biochem Biophys Res Commun. 2000 Jan 27;267(3):940–942. doi: 10.1006/bbrc.1999.2060. [DOI] [PubMed] [Google Scholar]
  3. Apletalina E. V., Muller L., Lindberg I. Mutations in the catalytic domain of prohormone convertase 2 result in decreased binding to 7B2 and loss of inhibition with 7B2 C-terminal peptide. J Biol Chem. 2000 May 12;275(19):14667–14677. doi: 10.1074/jbc.275.19.14667. [DOI] [PubMed] [Google Scholar]
  4. Ayala S., Colomer D., Gelpí J. L., Corrons J. L. alpha-Thalassaemia due to a single codon deletion in the alpha1-globin gene. Computational structural analysis of the new alpha-chain variant. Mutations in brief no. 132. Online. Hum Mutat. 1998;11(5):412–412. doi: 10.1002/(SICI)1098-1004(1998)11:5<412::AID-HUMU15>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  5. Ayoubi T. A., van Duijnhoven H. L., Coenen A. J., Jenks B. G., Roubos E. W., Martens G. J. Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study. Cell Tissue Res. 1991 May;264(2):329–334. doi: 10.1007/BF00313970. [DOI] [PubMed] [Google Scholar]
  6. Ayoubi T. A., van Duijnhoven H. L., van de Ven W. J., Jenks B. G., Roubos E. W., Martens G. J. The neuroendocrine polypeptide 7B2 is a precursor protein. J Biol Chem. 1990 Sep 15;265(26):15644–15647. [PubMed] [Google Scholar]
  7. Azzoni C., D'Adda T., Tamburrano G., Coscelli C., Madsen O. D., Scopsi L., Bordi C. Functioning human insulinomas. An immunohistochemical analysis of intracellular insulin processing. Virchows Arch. 1998 Dec;433(6):495–504. doi: 10.1007/s004280050280. [DOI] [PubMed] [Google Scholar]
  8. Azzoni C., Yu J. Y., Baggi M. T., D'Adda T., Timson C., Polak J. M., Bordi C. Studies on co-localization of 7B2 and pancreatic hormones in normal and tumoural islet cells. Virchows Arch A Pathol Anat Histopathol. 1992;421(6):457–466. doi: 10.1007/BF01606874. [DOI] [PubMed] [Google Scholar]
  9. Barbero P., Kitabgi P. Protein 7B2 is essential for the targeting and activation of PC2 into the regulated secretory pathway of rMTC 6-23 cells. Biochem Biophys Res Commun. 1999 Apr 13;257(2):473–479. doi: 10.1006/bbrc.1999.0495. [DOI] [PubMed] [Google Scholar]
  10. Benjannet S., Lusson J., Hamelin J., Savaria D., Chrétien M., Seidah N. G. Structure-function studies on the biosynthesis and bioactivity of the precursor convertase PC2 and the formation of the PC2/7B2 complex. FEBS Lett. 1995 Apr 3;362(2):151–155. doi: 10.1016/0014-5793(95)00228-2. [DOI] [PubMed] [Google Scholar]
  11. Benjannet S., Mamarbachi A. M., Hamelin J., Savaria D., Munzer J. S., Chrétien M., Seidah N. G. Residues unique to the pro-hormone convertase PC2 modulate its autoactivation, binding to 7B2 and enzymatic activity. FEBS Lett. 1998 May 22;428(1-2):37–42. doi: 10.1016/s0014-5793(98)00480-3. [DOI] [PubMed] [Google Scholar]
  12. Benjannet S., Marcinkiewicz M., Falgueyret J. P., Johnson D. E., Seidah N. G., Chrétien M. Secretory protein 7B2 is associated with pancreatic hormones within normal islets and some experimentally induced tumors. Endocrinology. 1988 Aug;123(2):874–884. doi: 10.1210/endo-123-2-874. [DOI] [PubMed] [Google Scholar]
  13. Benjannet S., Rondeau N., Day R., Chrétien M., Seidah N. G. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3564–3568. doi: 10.1073/pnas.88.9.3564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Benjannet S., Rondeau N., Paquet L., Boudreault A., Lazure C., Chrétien M., Seidah N. G. Comparative biosynthesis, covalent post-translational modifications and efficiency of prosegment cleavage of the prohormone convertases PC1 and PC2: glycosylation, sulphation and identification of the intracellular site of prosegment cleavage of PC1 and PC2. Biochem J. 1993 Sep 15;294(Pt 3):735–743. doi: 10.1042/bj2940735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Benjannet S., Savaria D., Chrétien M., Seidah N. G. 7B2 is a specific intracellular binding protein of the prohormone convertase PC2. J Neurochem. 1995 May;64(5):2303–2311. doi: 10.1046/j.1471-4159.1995.64052303.x. [DOI] [PubMed] [Google Scholar]
  16. Benjannet S., Savaria D., Laslop A., Munzer J. S., Chrétien M., Marcinkiewicz M., Seidah N. G. Alpha1-antitrypsin Portland inhibits processing of precursors mediated by proprotein convertases primarily within the constitutive secretory pathway. J Biol Chem. 1997 Oct 17;272(42):26210–26218. doi: 10.1074/jbc.272.42.26210. [DOI] [PubMed] [Google Scholar]
  17. Birch N. P., Tracer H. L., Hakes D. J., Loh Y. P. Coordinate regulation of mRNA levels of pro-opiomelanocortin and the candidate processing enzymes PC2 and PC3, but not furin, in rat pituitary intermediate lobe. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1311–1319. doi: 10.1016/0006-291x(91)91716-p. [DOI] [PubMed] [Google Scholar]
  18. Boudreault A., Gauthier D., Lazure C. Proprotein convertase PC1/3-related peptides are potent slow tight-binding inhibitors of murine PC1/3 and Hfurin. J Biol Chem. 1998 Nov 20;273(47):31574–31580. doi: 10.1074/jbc.273.47.31574. [DOI] [PubMed] [Google Scholar]
  19. Braks J. A., Broers C. A., Danger J. M., Martens G. J. Structural organization of the gene encoding the neuroendocrine chaperone 7B2. Eur J Biochem. 1996 Feb 15;236(1):60–67. doi: 10.1111/j.1432-1033.1996.00060.x. [DOI] [PubMed] [Google Scholar]
  20. Braks J. A., Martens G. J. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell. 1994 Jul 29;78(2):263–273. doi: 10.1016/0092-8674(94)90296-8. [DOI] [PubMed] [Google Scholar]
  21. Braks J. A., Martens G. J. The neuroendocrine chaperone 7B2 can enhance in vitro POMC cleavage by prohormone convertase PC2. FEBS Lett. 1995 Sep 4;371(2):154–158. doi: 10.1016/0014-5793(95)00915-v. [DOI] [PubMed] [Google Scholar]
  22. Braks J. A., Van Horssen A. M., Martens G. J. Dissociation of the complex between the neuroendocrine chaperone 7B2 and prohormone convertase PC2 is not associated with proPC2 maturation. Eur J Biochem. 1996 Jun 1;238(2):505–510. doi: 10.1111/j.1432-1033.1996.0505z.x. [DOI] [PubMed] [Google Scholar]
  23. Brayton K. A., Aimi J., Qiu H., Yazdanparast R., Ghatei M. A., Polak J. M., Bloom S. R., Dixon J. E. Cloning, characterization, and sequence of a porcine cDNA encoding a secreted neuronal and endocrine protein. DNA. 1988 Dec;7(10):713–719. doi: 10.1089/dna.1988.7.713. [DOI] [PubMed] [Google Scholar]
  24. Cameron A., Fortenberry Y., Lindberg I. The SAAS granin exhibits structural and functional homology to 7B2 and contains a highly potent hexapeptide inhibitor of PC1. FEBS Lett. 2000 May 12;473(2):135–138. doi: 10.1016/s0014-5793(00)01511-8. [DOI] [PubMed] [Google Scholar]
  25. Cassidy S. B. Prader-Willi syndrome. J Med Genet. 1997 Nov;34(11):917–923. doi: 10.1136/jmg.34.11.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Chan J. S., Deng J. Y., Brar A. K., Seidah N. G., Chrétien M. Inhibition of release of a novel pituitary polypeptide, 7B2, follicle-stimulating hormone, and luteinizing hormone from rat anterior pituitary cells in vitro by human beta-inhibin. Can J Physiol Pharmacol. 1986 Sep;64(9):1259–1262. doi: 10.1139/y86-212. [DOI] [PubMed] [Google Scholar]
  27. Chaudhuri B., Huijbregts R. P., Coen J. J., Fürst P. The neuroendocrine protein 7B2 contains unusually potent transcriptional activating sequences. Biochem Biophys Res Commun. 1995 Nov 2;216(1):1–10. doi: 10.1006/bbrc.1995.2584. [DOI] [PubMed] [Google Scholar]
  28. Chaudhuri B., Stephan C. A C-terminal domain, which prevents secretion of the neuroendocrine protein 7B2 in Saccharomyces cerevisiae, inhibits Kex2 yet is processed by the Yap3 protease. FEBS Lett. 1995 May 1;364(1):91–97. doi: 10.1016/0014-5793(95)00360-l. [DOI] [PubMed] [Google Scholar]
  29. Chaudhuri B., Stephan C., Huijbregts R. P., Martens G. J. The neuroendocrine protein 7B2 acts as a molecular chaperone in the in vitro folding of human insulin-like growth factor-1 secreted from yeast. Biochem Biophys Res Commun. 1995 Jun 15;211(2):417–425. doi: 10.1006/bbrc.1995.1830. [DOI] [PubMed] [Google Scholar]
  30. Collini P., Sampietro G., Luksch R., Migliorini L., Boracchi P., Scopsi L. Differentiation in paediatric peripheral primitive neuroectodermal tumours of bone. A critical contribution to its assessment. Virchows Arch. 1998 Jun;432(6):505–513. doi: 10.1007/s004280050198. [DOI] [PubMed] [Google Scholar]
  31. Danoff A., Shields D. Differential translation of two distinct preprosomatostatin messenger RNAs. J Biol Chem. 1988 Nov 5;263(31):16461–16466. [PubMed] [Google Scholar]
  32. Day R., Schafer M. K., Watson S. J., Chrétien M., Seidah N. G. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol Endocrinol. 1992 Mar;6(3):485–497. doi: 10.1210/mend.6.3.1316544. [DOI] [PubMed] [Google Scholar]
  33. De Moor C. H., Jansen M., Sussenbach J. S., Van den Brande J. L. Differential polysomal localization of human insulin-like-growth-factor-2 mRNAs in cell lines and foetal liver. Eur J Biochem. 1994 Jun 15;222(3):1017–1024. doi: 10.1111/j.1432-1033.1994.tb18953.x. [DOI] [PubMed] [Google Scholar]
  34. Falgueyret J. P., Marcinkiewicz M., Benjannet S., Cantin M., Seidah N. G., Chrétien M. Immunocytochemical localization of a novel pituitary polypeptide "7B2" in the gastro-intestinal tract of the rat. Cell Tissue Res. 1987 Sep;249(3):707–709. doi: 10.1007/BF00217343. [DOI] [PubMed] [Google Scholar]
  35. Fortenberry Y., Liu J., Lindberg I. The role of the 7B2 CT peptide in the inhibition of prohormone convertase 2 in endocrine cell lines. J Neurochem. 1999 Sep;73(3):994–1003. doi: 10.1046/j.1471-4159.1999.0730994.x. [DOI] [PubMed] [Google Scholar]
  36. Fricker L. D., McKinzie A. A., Sun J., Curran E., Qian Y., Yan L., Patterson S. D., Courchesne P. L., Richards B., Levin N. Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J Neurosci. 2000 Jan 15;20(2):639–648. doi: 10.1523/JNEUROSCI.20-02-00639.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gabreëls B. A., Sonnemans M. A., Seidah N. G., Chrétien M., van Leeuwen F. W. Dynamics of 7B2 and galanin expression in solitary magnocellular hypothalamic vasopressin neurons of the homozygous Brattleboro rat. Brain Res. 1992 Jul 10;585(1-2):275–282. doi: 10.1016/0006-8993(92)91218-4. [DOI] [PubMed] [Google Scholar]
  38. Gabreëls B. A., Swaab D. F., Seidah N. G., van Duijnhoven H. L., Martens G. J., van Leeuwen F. W. Differential expression of the neuroendocrine polypeptide 7B2 in hypothalami of Prader-(Labhart)-Willi syndrome patients. Brain Res. 1994 Sep 19;657(1-2):281–293. doi: 10.1016/0006-8993(94)90978-4. [DOI] [PubMed] [Google Scholar]
  39. Gabreëls B. A., Swaab D. F., de Kleijn D. P., Seidah N. G., Van de Loo J. W., Van de Ven W. J., Martens G. J., van Leeuwen F. W. Attenuation of the polypeptide 7B2, prohormone convertase PC2, and vasopressin in the hypothalamus of some Prader-Willi patients: indications for a processing defect. J Clin Endocrinol Metab. 1998 Feb;83(2):591–599. doi: 10.1210/jcem.83.2.4542. [DOI] [PubMed] [Google Scholar]
  40. García-Caballero A., Gallego R., García-Caballero T., Fraga M., Blanco M., Fernández-Redondo V., Beiras A. Cellular and subcellular distribution of 7B2 in porcine Merkel cells. Anat Rec. 1997 Jun;248(2):159–163. doi: 10.1002/(SICI)1097-0185(199706)248:2<159::AID-AR2>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  41. Gething M. J. Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol. 1999 Oct;10(5):465–472. doi: 10.1006/scdb.1999.0318. [DOI] [PubMed] [Google Scholar]
  42. Gherzi R., Fehmann H. C., Eissele R., Göke B. Expression, intracellular localization, and gene transcription regulation of the secretory protein 7B2 in endocrine pancreatic cell lines and human insulinomas. Exp Cell Res. 1994 Jul;213(1):20–27. doi: 10.1006/excr.1994.1168. [DOI] [PubMed] [Google Scholar]
  43. Guest P. C., Arden S. D., Bennett D. L., Clark A., Rutherford N. G., Hutton J. C. The post-translational processing and intracellular sorting of PC2 in the islets of Langerhans. J Biol Chem. 1992 Nov 5;267(31):22401–22406. [PubMed] [Google Scholar]
  44. Hacker G. W., Bishop A. E., Terenghi G., Varndell I. M., Aghahowa J., Pollard K., Thurner J., Polak J. M. Multiple peptide production and presence of general neuroendocrine markers detected in 12 cases of human phaeochromocytoma and in mammalian adrenal glands. Virchows Arch A Pathol Anat Histopathol. 1988;412(5):399–411. doi: 10.1007/BF00750574. [DOI] [PubMed] [Google Scholar]
  45. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  46. Holling T. M., van Herp F., Durston A. J., Martens G. J. Differential onset of expression of mRNAs encoding proopiomelanocortin, prohormone convertases 1 and 2, and granin family members during Xenopus laevis development. Brain Res Mol Brain Res. 2000 Jan 10;75(1):70–75. doi: 10.1016/s0169-328x(99)00296-x. [DOI] [PubMed] [Google Scholar]
  47. Hsi K. L., Seidah N. G., De Serres G., Chrétien M. Isolation and NH2-terminal sequence of a novel porcine anterior pituitary polypeptide. Homology to proinsulin, secretin and Rous sarcoma virus transforming protein TVFV60. FEBS Lett. 1982 Oct 18;147(2):261–266. doi: 10.1016/0014-5793(82)81055-7. [DOI] [PubMed] [Google Scholar]
  48. Hwang J. R., Siekhaus D. E., Fuller R. S., Taghert P. H., Lindberg I. Interaction of Drosophila melanogaster prohormone convertase 2 and 7B2. Insect cell-specific processing and secretion. J Biol Chem. 2000 Jun 9;275(23):17886–17893. doi: 10.1074/jbc.M000032200. [DOI] [PubMed] [Google Scholar]
  49. Iguchi H., Chan J. S., Dennis M., Seidah N. G., Chrétien M. Regional distribution of a novel pituitary protein (7B2) in the rat brain. Brain Res. 1985 Jul 8;338(1):91–96. doi: 10.1016/0006-8993(85)90251-3. [DOI] [PubMed] [Google Scholar]
  50. Iguchi H., Chan J. S., Seidah N. G., Chrétien M. Evidence for a novel pituitary protein (7B2) in human brain, cerebrospinal fluid and plasma: brain concentrations in controls and patients with Alzheimer's disease. Peptides. 1987 Jul-Aug;8(4):593–598. doi: 10.1016/0196-9781(87)90030-1. [DOI] [PubMed] [Google Scholar]
  51. Iguchi H., Chan J. S., Seidah N. G., Chrétien M. Tissue distribution and molecular forms of a novel pituitary protein in the rat. Neuroendocrinology. 1984 Nov;39(5):453–458. doi: 10.1159/000124020. [DOI] [PubMed] [Google Scholar]
  52. Iguchi H., Demura R., Yasuda D., Wakasugi H. Effect of LHRH on plasma 7B2 in patients with gonadotropin-producing pituitary adenomas. Horm Metab Res. 1992 Jan;24(1):31–33. doi: 10.1055/s-2007-1003246. [DOI] [PubMed] [Google Scholar]
  53. Iguchi H., Hara N., Hayashi I., Ohta M., Bloom S. R., Chrétien M. Elevation of a novel pituitary protein (7B2) in the plasma in small cell carcinoma of the lung. Eur J Cancer Clin Oncol. 1989 Aug;25(8):1225–1232. doi: 10.1016/0277-5379(89)90419-7. [DOI] [PubMed] [Google Scholar]
  54. Iguchi H., Hara N., Miyazaki K., Natori S., Nawata H., Ohta M., Bloom S. R. Presence of high concentration of 7B2 in pleural effusion. Endocrinol Jpn. 1988 Dec;35(6):885–889. doi: 10.1507/endocrj1954.35.885. [DOI] [PubMed] [Google Scholar]
  55. Iguchi H., Natori S., Nawata H., Kato K., Ibayashi H., Chan J. S., Seidah N. G., Chretien M. Elevation of plasma 7B2 (a novel pituitary protein) in cord blood at obstetrical delivery and the possible correlation with GH. Life Sci. 1987 Oct 19;41(16):1921–1927. doi: 10.1016/0024-3205(87)90744-2. [DOI] [PubMed] [Google Scholar]
  56. Iguchi H., Natori S., Nawata H., Kato K., Ibayashi H., Chan J. S., Seidah N. G., Chrétien M. Presence of the novel pituitary protein "7B2" in bovine chromaffin granules: possible co-release of 7B2 and catecholamine as induced by nicotine. J Neurochem. 1987 Dec;49(6):1810–1814. doi: 10.1111/j.1471-4159.1987.tb02440.x. [DOI] [PubMed] [Google Scholar]
  57. Iguchi H., Natori S., Ou Y., Nawata H., Kato K., Ibayashi H., Bloom S. R. Plasma levels of 7B2 (a novel pituitary polypeptide) and its molecular forms in plasma and urine in patients with chronic renal failure: possible degradation by the kidney. Regul Pept. 1988 Jun;21(3-4):263–270. doi: 10.1016/0167-0115(88)90009-2. [DOI] [PubMed] [Google Scholar]
  58. Iguchi H., Niida Y., Natori S., Takayanagi N., Kohno H., Kato K., Nawata H. Remarkable changes in the plasma levels of pituitary protein "7B2" during childhood. Pediatr Res. 1988 Aug;24(2):194–196. doi: 10.1203/00006450-198808000-00011. [DOI] [PubMed] [Google Scholar]
  59. Iguchi H., Okeda T., Takaki R. Evidence for secretion of 7B2 by A- and B-cells of hamster pancreatic islets. Regul Pept. 1991 Nov 26;36(3):407–414. doi: 10.1016/0167-0115(91)90073-p. [DOI] [PubMed] [Google Scholar]
  60. Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
  61. Jan G., Taylor N. A., Scougall K. T., Docherty K., Shennan K. I. The propeptide of prohormone convertase PC2 acts as a transferable aggregation and membrane-association signal. Eur J Biochem. 1998 Oct 1;257(1):41–46. doi: 10.1046/j.1432-1327.1998.2570041.x. [DOI] [PubMed] [Google Scholar]
  62. Jeannotte R., Paquin J., Petit-Turcotte C., Day R. Convertase PC2 and the neuroendocrine polypeptide 7B2 are co-induced and processed during neuronal differentiation of P19 embryonal carcinoma cells. DNA Cell Biol. 1997 Oct;16(10):1175–1187. doi: 10.1089/dna.1997.16.1175. [DOI] [PubMed] [Google Scholar]
  63. Kajiwara H., Itoh Y., Itoh J., Yasuda M., Osamura R. Y. Immunohistochemical expressions of prohormone convertase (PC)1/3 and PC2 in carcinoids of various organs. Tokai J Exp Clin Med. 1999 Apr;24(1):13–20. [PubMed] [Google Scholar]
  64. Kimura N., Ishikawa T., Sasaki Y., Sasano N., Onodera K., Shimizu Y., Kimura I., Steiner D. F., Nagura H. Expression of prohormone convertase, PC2, in adrenocorticotropin-producing thymic carcinoid with elevated plasma corticotropin-releasing hormone. J Clin Endocrinol Metab. 1996 Jan;81(1):390–395. doi: 10.1210/jcem.81.1.8550783. [DOI] [PubMed] [Google Scholar]
  65. Kimura N., Pilichowska M., Okamoto H., Kimura I., Aunis D. Immunohistochemical expression of chromogranins A and B, prohormone convertases 2 and 3, and amidating enzyme in carcinoid tumors and pancreatic endocrine tumors. Mod Pathol. 2000 Feb;13(2):140–146. doi: 10.1038/modpathol.3880026. [DOI] [PubMed] [Google Scholar]
  66. Konoshita T., Gasc J. M., Villard E., Seidah N. G., Corvol P., Pinet F. Co-expression of PC2 and proenkephalin in human tumoral adrenal medullary tissues. Biochimie. 1994;76(3-4):241–244. doi: 10.1016/0300-9084(94)90152-x. [DOI] [PubMed] [Google Scholar]
  67. Konoshita T., Gasc J. M., Villard E., Takeda R., Seidah N. G., Corvol P., Pinet F. Expression of PC2 and PC1/PC3 in human pheochromocytomas. Mol Cell Endocrinol. 1994 Mar;99(2):307–314. doi: 10.1016/0303-7207(94)90022-1. [DOI] [PubMed] [Google Scholar]
  68. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kozak M. Determinants of translational fidelity and efficiency in vertebrate mRNAs. Biochimie. 1994;76(9):815–821. doi: 10.1016/0300-9084(94)90182-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  71. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  72. Lamango N. S., Apletalina E., Liu J., Lindberg I. The proteolytic maturation of prohormone convertase 2 (PC2) is a pH-driven process. Arch Biochem Biophys. 1999 Feb 15;362(2):275–282. doi: 10.1006/abbi.1998.1033. [DOI] [PubMed] [Google Scholar]
  73. Lamango N. S., Zhu X., Lindberg I. Purification and enzymatic characterization of recombinant prohormone convertase 2: stabilization of activity by 21 kDa 7B2. Arch Biochem Biophys. 1996 Jun 15;330(2):238–250. doi: 10.1006/abbi.1996.0249. [DOI] [PubMed] [Google Scholar]
  74. Lazure C., Benjannet S., Seidah N. G., Chrétien M. Processed forms of neuroendocrine proteins 7B2 and secretogranin II are found in porcine pituitary extracts. Int J Pept Protein Res. 1991 Oct;38(4):392–400. doi: 10.1111/j.1399-3011.1991.tb01519.x. [DOI] [PubMed] [Google Scholar]
  75. Leonhardt U. T., Stevenson J. C., Ghatei M. A., Lischka A., Macdonald D. W., Whitehead M. I., Bloom S. R. Elevated 7B2 levels during normal human pregnancy. Am J Obstet Gynecol. 1988 May;158(5):1141–1144. doi: 10.1016/0002-9378(88)90241-4. [DOI] [PubMed] [Google Scholar]
  76. Leonhardt U., Eriksson B., Oberg K., Wide L., Ghatei M. A., Bloom S. R. A new pituitary protein 7B2 is increased in patients with high alpha- or beta-hCG. Acta Endocrinol (Copenh) 1989 Mar;120(3):289–294. doi: 10.1530/acta.0.1200289. [DOI] [PubMed] [Google Scholar]
  77. Li Q. L., Jansen E., Brent G. A., Naqvi S., Wilber J. F., Friedman T. C. Interactions between the prohormone convertase 2 promoter and the thyroid hormone receptor. Endocrinology. 2000 Sep;141(9):3256–3266. doi: 10.1210/endo.141.9.7674. [DOI] [PubMed] [Google Scholar]
  78. Linard C. G., Tadros H., Sirois F., Mbikay M. Calcium-induced aggregation of neuroendocrine protein 7B2 in vitro and its modulation by ATP. Mol Cell Biochem. 1995 Oct 4;151(1):39–47. doi: 10.1007/BF01076894. [DOI] [PubMed] [Google Scholar]
  79. Lindberg I., Tu B., Muller L., Dickerson I. M. Cloning and functional analysis of C. elegans 7B2. DNA Cell Biol. 1998 Aug;17(8):727–734. doi: 10.1089/dna.1998.17.727. [DOI] [PubMed] [Google Scholar]
  80. Lindberg I., van den Hurk W. H., Bui C., Batie C. J. Enzymatic characterization of immunopurified prohormone convertase 2: potent inhibition by a 7B2 peptide fragment. Biochemistry. 1995 Apr 25;34(16):5486–5493. doi: 10.1021/bi00016a020. [DOI] [PubMed] [Google Scholar]
  81. Lloyd R. V., Jin L., Qian X., Scheithauer B. W., Young W. F., Jr, Davis D. H. Analysis of the chromogranin A post-translational cleavage product pancreastatin and the prohormone convertases PC2 and PC3 in normal and neoplastic human pituitaries. Am J Pathol. 1995 May;146(5):1188–1198. [PMC free article] [PubMed] [Google Scholar]
  82. Marcinkiewicz M., Benjannet S., Cantin M., Seidah N. G., Chrétien M. CNS distribution of a novel pituitary protein '7B2': localization in secretory and synaptic vesicles. Brain Res. 1986 Aug 20;380(2):349–356. doi: 10.1016/0006-8993(86)90233-7. [DOI] [PubMed] [Google Scholar]
  83. Marcinkiewicz M., Benjannet S., Falgueyret J. P., Seidah N. G., Schürch W., Verdy M., Cantin M., Chrétien M. Identification and localization of 7B2 protein in human, porcine, and rat thyroid gland and in human medullary carcinoma. Endocrinology. 1988 Aug;123(2):866–873. doi: 10.1210/endo-123-2-866. [DOI] [PubMed] [Google Scholar]
  84. Marcinkiewicz M., Benjannet S., Seidah N. G., Cantin M., Chrétien M. Immunocytochemical localization of a novel pituitary protein (7B2) within the rat brain and hypophysis. J Histochem Cytochem. 1985 Dec;33(12):1219–1226. doi: 10.1177/33.12.4067275. [DOI] [PubMed] [Google Scholar]
  85. Marcinkiewicz M., Benjannet S., Seidah N. G., Cantin M., Chrétien M. The pituitary polypeptide "7B2" is associated with LH/FSH and TSH cells and is localized within secretory vesicles. Cell Tissue Res. 1987 Oct;250(1):205–214. doi: 10.1007/BF00214673. [DOI] [PubMed] [Google Scholar]
  86. Marcinkiewicz M., Benjannet S., Sikstrom R. A., Cantin M., Seidah N. G., Chretien M. Immunoreactivity of vasopressin and a novel pituitary protein '7B2' in Long-Evans and Brattleboro rat hypothalamus and hypophysis. Neurosci Lett. 1985 Sep 16;60(1):7–12. doi: 10.1016/0304-3940(85)90373-8. [DOI] [PubMed] [Google Scholar]
  87. Marcinkiewicz M., Fischer-Colbrie R., Falgueyret J. P., Benjannet S., Seidah N. G., Lazure C., Winkler H., Chrétien M. Two-dimensional immunoblotting analysis and immunocytochemical localization of the secretory polypeptide 7B2 in adrenal medulla. Neurosci Lett. 1988 Dec 19;95(1-3):81–87. doi: 10.1016/0304-3940(88)90636-2. [DOI] [PubMed] [Google Scholar]
  88. Marcinkiewicz M., Touraine P., Chrétien M. Pan-neuronal mRNA expression of the secretory polypeptide 7B2. Neurosci Lett. 1994 Aug 15;177(1-2):91–94. doi: 10.1016/0304-3940(94)90052-3. [DOI] [PubMed] [Google Scholar]
  89. Marcinkiewicz M., Touraine P., Mbikay M., Chrétien M. Expression of neuroendocrine secretory protein 7B2 mRNA in the mouse and rat pituitary gland. Neuroendocrinology. 1993 Jul;58(1):86–93. doi: 10.1159/000126517. [DOI] [PubMed] [Google Scholar]
  90. Martens G. J., Braks J. A., Eib D. W., Zhou Y., Lindberg I. The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5784–5787. doi: 10.1073/pnas.91.13.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Martens G. J., Bussemakers M. J., Ayoubi T. A., Jenks B. G. The novel pituitary polypeptide 7B2 is a highly-conserved protein coexpressed with proopiomelanocortin. Eur J Biochem. 1989 Apr 15;181(1):75–79. doi: 10.1111/j.1432-1033.1989.tb14695.x. [DOI] [PubMed] [Google Scholar]
  92. Martens G. J. Cloning and sequence analysis of human pituitary cDNA encoding the novel polypeptide 7B2. FEBS Lett. 1988 Jul 4;234(1):160–164. doi: 10.1016/0014-5793(88)81324-3. [DOI] [PubMed] [Google Scholar]
  93. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  94. Mattei M. G., Mbikay M., Sylla B. S., Lenoir G., Mattei J. F., Seidah N. G., Chretien M. Assignment of the gene for neuroendocrine protein 7B2 (SGNE1 locus) to mouse chromosome region 2[E3-F3] and to human chromosome region 15q11-q15. Genomics. 1990 Mar;6(3):436–440. doi: 10.1016/0888-7543(90)90473-8. [DOI] [PubMed] [Google Scholar]
  95. Matthews G., Shennan K. I., Seal A. J., Taylor N. A., Colman A., Docherty K. Autocatalytic maturation of the prohormone convertase PC2. J Biol Chem. 1994 Jan 7;269(1):588–592. [PubMed] [Google Scholar]
  96. Mbikay M., Grant S. G., Sirois F., Tadros H., Skowronski J., Lazure C., Seidah N. G., Hanahan D., Chrétien M. cDNA sequence of neuroendocrine protein 7B2 expressed in beta cell tumors of transgenic mice. Int J Pept Protein Res. 1989 Jan;33(1):39–45. doi: 10.1111/j.1399-3011.1989.tb00681.x. [DOI] [PubMed] [Google Scholar]
  97. Mbikay M., Sirois F., Yao J., Seidah N. G., Chrétien M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br J Cancer. 1997;75(10):1509–1514. doi: 10.1038/bjc.1997.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Muller L., Cameron A., Fortenberry Y., Apletalina E. V., Lindberg I. Processing and sorting of the prohormone convertase 2 propeptide. J Biol Chem. 2000 Dec 15;275(50):39213–39222. doi: 10.1074/jbc.M003547200. [DOI] [PubMed] [Google Scholar]
  99. Muller L., Zhu P., Juliano M. A., Juliano L., Lindberg I. A 36-residue peptide contains all of the information required for 7B2-mediated activation of prohormone convertase 2. J Biol Chem. 1999 Jul 23;274(30):21471–21477. doi: 10.1074/jbc.274.30.21471. [DOI] [PubMed] [Google Scholar]
  100. Muller L., Zhu X., Lindberg I. Mechanism of the facilitation of PC2 maturation by 7B2: involvement in ProPC2 transport and activation but not folding. J Cell Biol. 1997 Nov 3;139(3):625–638. doi: 10.1083/jcb.139.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Natori S., Iguchi H., Kurose S., Bloom S. R., Nawata H. Age-related change in 7B2 (a novel pituitary polypeptide) concentrations in human cerebrospinal fluid. Regul Pept. 1988 Sep;22(4):371–376. doi: 10.1016/0167-0115(88)90113-9. [DOI] [PubMed] [Google Scholar]
  102. Natori S., Iguchi H., Nawata H., Kato K., Ibayashi H., Chrétian M. Age-related change in plasma concentration of 7B2 (a novel pituitary polypeptide) in normal humans. Life Sci. 1987 Aug 24;41(8):977–981. doi: 10.1016/0024-3205(87)90685-0. [DOI] [PubMed] [Google Scholar]
  103. Natori S., Iguchi H., Nawata H., Kato K., Ibayashi H., Nakagaki H., Chrétien M. Evidence for the release of a novel pituitary polypeptide (7B2) from the growth hormone-producing pituitary adenoma of patients with acromegaly. J Clin Endocrinol Metab. 1988 Feb;66(2):430–437. doi: 10.1210/jcem-66-2-430. [DOI] [PubMed] [Google Scholar]
  104. Natori S., Iguchi H., Ohashi M., Chrétien M., Nawata H. LHRH increases plasma 7B2 concentration in normal human subjects. Endocrinol Jpn. 1989 Jun;36(3):367–371. doi: 10.1507/endocrj1954.36.367. [DOI] [PubMed] [Google Scholar]
  105. Natori S., Iguchi H., Ohashi M., Nakao R., Bloom S. R., Nawata H. Effect of octapeptide somatostatin analogue (SMS 201-995) on plasma 7B2 (a neuroendocrine polypeptide) levels in patients with acromegaly. Clin Endocrinol (Oxf) 1990 Jan;32(1):49–55. doi: 10.1111/j.1365-2265.1990.tb03749.x. [DOI] [PubMed] [Google Scholar]
  106. Natori S., Iguchi H., Ohashi M., Nawata H. Plasma 7B2 (a novel pituitary protein) immunoreactivity concentrations in patients with various endocrine disorders. Endocrinol Jpn. 1988 Aug;35(4):651–654. doi: 10.1507/endocrj1954.35.651. [DOI] [PubMed] [Google Scholar]
  107. Nie Y., Nakashima M., Brubaker P. L., Li Q. L., Perfetti R., Jansen E., Zambre Y., Pipeleers D., Friedman T. C. Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. J Clin Invest. 2000 Apr;105(7):955–965. doi: 10.1172/JCI7456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Ohagi S., LaMendola J., LeBeau M. M., Espinosa R., 3rd, Takeda J., Smeekens S. P., Chan S. J., Steiner D. F. Identification and analysis of the gene encoding human PC2, a prohormone convertase expressed in neuroendocrine tissues. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4977–4981. doi: 10.1073/pnas.89.11.4977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Ohashi M., Natori S., Fujio N., Iguchi H., Nawata H. Secretory protein 7B2. A novel tumor marker of medullary carcinoma of the thyroid. Horm Metab Res. 1990 Feb;22(2):114–116. doi: 10.1055/s-2007-1004862. [DOI] [PubMed] [Google Scholar]
  110. Oyarce A. M., Hand T. A., Mains R. E., Eipper B. A. Dopaminergic regulation of secretory granule-associated proteins in rat intermediate pituitary. J Neurochem. 1996 Jul;67(1):229–241. doi: 10.1046/j.1471-4159.1996.67010229.x. [DOI] [PubMed] [Google Scholar]
  111. Ozawa H., Takata K. The granin family--its role in sorting and secretory granule formation. Cell Struct Funct. 1995 Dec;20(6):415–420. doi: 10.1247/csf.20.415. [DOI] [PubMed] [Google Scholar]
  112. Paquet L., Bergeron F., Boudreault A., Seidah N. G., Chrétien M., Mbikay M., Lazure C. The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin-like convertase. J Biol Chem. 1994 Jul 29;269(30):19279–19285. [PubMed] [Google Scholar]
  113. Paquet L., Lazure C., Seidah N. G., Chrétien M., Mbikay M. The production by alternate splicing of two mRNAs differing by one codon could be an intrinsic property of neuroendocrine protein 7B2 gene expression in man. Biochem Biophys Res Commun. 1991 Jan 15;174(1):156–162. doi: 10.1016/0006-291x(91)90499-w. [DOI] [PubMed] [Google Scholar]
  114. Paquet L., Rondeau N., Seidah N. G., Lazure C., Chrétien M., Mbikay M. Immunological identification and sequence characterization of a peptide derived from the processing of neuroendocrine protein 7B2. FEBS Lett. 1991 Dec 2;294(1-2):23–26. doi: 10.1016/0014-5793(91)81334-5. [DOI] [PubMed] [Google Scholar]
  115. Petit-Turcotte C., Paquin J. Coordinate regulation of neuroendocrine convertase PC2 and peptide 7B2 in P19 neurons. Peptides. 2000 Mar;21(3):365–372. doi: 10.1016/s0196-9781(00)00150-9. [DOI] [PubMed] [Google Scholar]
  116. Qian Y., Devi L. A., Mzhavia N., Munzer S., Seidah N. G., Fricker L. D. The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1. J Biol Chem. 2000 Aug 4;275(31):23596–23601. doi: 10.1074/jbc.M001583200. [DOI] [PubMed] [Google Scholar]
  117. Rodacker Mark, Jin Long, Zhang Shuga, Lloyd Ricardo V. Insulin and Glucagon mRNA Expression and Prohormone Convertase Immunoreactivity in Normal and Neoplastic Pancreatic Endocrine Tissue. Endocr Pathol. 2000 Summer;11(2):179–183. doi: 10.1385/ep:11:2:179. [DOI] [PubMed] [Google Scholar]
  118. Roebroek A. J., Dehaen M. R., van Bokhoven A., Martens G. J., Marÿnen P., van den Berghe H., Van de Ven W. J. Regional mapping of the human gene encoding the novel pituitary polypeptide 7B2 to chromosome 15q13----q14 by in situ hybridization. Cytogenet Cell Genet. 1989;50(2-3):158–160. doi: 10.1159/000132749. [DOI] [PubMed] [Google Scholar]
  119. Roebroek A. J., Martens G. J., Duits A. J., Schalken J. A., van Bokhoven A., Wagenaar S. S., Van de Ven W. J. Differential expression of the gene encoding the novel pituitary polypeptide 7B2 in human lung cancer cells. Cancer Res. 1989 Aug 1;49(15):4154–4158. [PubMed] [Google Scholar]
  120. Rounseville M. P., Davis T. P. Prohormone convertase and autocrine growth factor mRNAs are coexpressed in small cell lung carcinoma. J Mol Endocrinol. 2000 Aug;25(1):121–128. doi: 10.1677/jme.0.0250121. [DOI] [PubMed] [Google Scholar]
  121. Rovère C., Mort J. S., Chrétien M., Seidah N. G. Cathepsin-B fusion proteins misroute secretory protein partners such as the proprotein convertase PC2-7B2 complex toward the lysosomal degradation pathways. Biochem Biophys Res Commun. 2000 Sep 24;276(2):594–599. doi: 10.1006/bbrc.2000.3478. [DOI] [PubMed] [Google Scholar]
  122. Schuppin G. T., Rhodes C. J. Specific co-ordinated regulation of PC3 and PC2 gene expression with that of preproinsulin in insulin-producing beta TC3 cells. Biochem J. 1996 Jan 1;313(Pt 1):259–268. doi: 10.1042/bj3130259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Seidah N. G., Chrétien M., Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76(3-4):197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
  124. Seidah N. G., Chrétien M. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol. 1997 Oct;8(5):602–607. doi: 10.1016/s0958-1669(97)80036-5. [DOI] [PubMed] [Google Scholar]
  125. Seidah N. G., Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999 Nov 27;848(1-2):45–62. doi: 10.1016/s0006-8993(99)01909-5. [DOI] [PubMed] [Google Scholar]
  126. Seidah N. G., Hsi K. L., De Serres G., Rochemont J., Hamelin J., Antakly T., Cantin M., Chrétien M. Isolation and NH2-terminal sequence of a highly conserved human and porcine pituitary protein belonging to a new superfamily. Immunocytochemical localization in pars distalis and pars nervosa of the pituitary and in the supraoptic nucleus of the hypothalamus. Arch Biochem Biophys. 1983 Sep;225(2):525–534. doi: 10.1016/0003-9861(83)90063-2. [DOI] [PubMed] [Google Scholar]
  127. Seidel B., Dong W., Savaria D., Zheng M., Pintar J. E., Day R. Neuroendocrine protein 7B2 is essential for proteolytic conversion and activation of proprotein convertase 2 in vivo. DNA Cell Biol. 1998 Dec;17(12):1017–1029. doi: 10.1089/dna.1998.17.1017. [DOI] [PubMed] [Google Scholar]
  128. Seldeslagh K. A., Lauweryns J. M. 7B2 expression in intrapulmonary neuroepithelial bodies: immunocytochemical detection and colocalization with serotonin and calcitonin gene-related peptide. Regul Pept. 1994 Oct 21;53(3):223–236. doi: 10.1016/0167-0115(94)90171-6. [DOI] [PubMed] [Google Scholar]
  129. Seldeslagh K. A., Lauweryns J. M. Immunohistochemical distribution of 7B2 and colocalization with calcitonin gene-related peptide in rat lung. Arch Histol Cytol. 1994 Oct;57(4):359–367. doi: 10.1679/aohc.57.359. [DOI] [PubMed] [Google Scholar]
  130. Senatorov V. V., Yang C. R., Marcinkiewicz M., Chrétien M., Renaud L. P. Depolarizing action of secretory granule protein 7B2 on rat supraoptic neurosecretory neurons. J Neuroendocrinol. 1993 Oct;5(5):533–536. doi: 10.1111/j.1365-2826.1993.tb00518.x. [DOI] [PubMed] [Google Scholar]
  131. Shen F. S., Seidah N. G., Lindberg I. Biosynthesis of the prohormone convertase PC2 in Chinese hamster ovary cells and in rat insulinoma cells. J Biol Chem. 1993 Nov 25;268(33):24910–24915. [PubMed] [Google Scholar]
  132. Shennan K. I., Taylor N. A., Docherty K. Calcium- and pH-dependent aggregation and membrane association of the precursor of the prohormone convertase PC2. J Biol Chem. 1994 Jul 15;269(28):18646–18650. [PubMed] [Google Scholar]
  133. Shennan K. I., Taylor N. A., Jermany J. L., Matthews G., Docherty K. Differences in pH optima and calcium requirements for maturation of the prohormone convertases PC2 and PC3 indicates different intracellular locations for these events. J Biol Chem. 1995 Jan 20;270(3):1402–1407. doi: 10.1074/jbc.270.3.1402. [DOI] [PubMed] [Google Scholar]
  134. Shinde U., Inouye M. Propeptide-mediated folding in subtilisin: the intramolecular chaperone concept. Adv Exp Med Biol. 1996;379:147–154. doi: 10.1007/978-1-4613-0319-0_16. [DOI] [PubMed] [Google Scholar]
  135. Sigafoos J., Chestnut W. G., Merrill B. M., Taylor L. C., Diliberto E. J., Jr, Viveros O. H. Identification of a 7B2-derived tridecapeptide from bovine adrenal medulla chromaffin vesicles. Cell Mol Neurobiol. 1993 Jun;13(3):271–278. doi: 10.1007/BF00733755. [DOI] [PubMed] [Google Scholar]
  136. Skelly R. H., Schuppin G. T., Ishihara H., Oka Y., Rhodes C. J. Glucose-regulated translational control of proinsulin biosynthesis with that of the proinsulin endopeptidases PC2 and PC3 in the insulin-producing MIN6 cell line. Diabetes. 1996 Jan;45(1):37–43. doi: 10.2337/diab.45.1.37. [DOI] [PubMed] [Google Scholar]
  137. Sonenberg N. Translation factors as effectors of cell growth and tumorigenesis. Curr Opin Cell Biol. 1993 Dec;5(6):955–960. doi: 10.1016/0955-0674(93)90076-3. [DOI] [PubMed] [Google Scholar]
  138. Spijker S., Smit A. B., Martens G. J., Geraerts W. P. Identification of a molluscan homologue of the neuroendocrine polypeptide 7B2. J Biol Chem. 1997 Feb 14;272(7):4116–4120. doi: 10.1074/jbc.272.7.4116. [DOI] [PubMed] [Google Scholar]
  139. Steel J. H., Van Noorden S., Ballesta J., Gibson S. J., Ghatei M. A., Burrin J., Leonhardt U., Domin J., Bloom S. R., Polak J. M. Localization of 7B2, neuromedin B, and neuromedin U in specific cell types of rat, mouse, and human pituitary, in rat hypothalamus, and in 30 human pituitary and extrapituitary tumors. Endocrinology. 1988 Jan;122(1):270–282. doi: 10.1210/endo-122-1-270. [DOI] [PubMed] [Google Scholar]
  140. Suzuki H., Christofides N. D., Adrian T. E., Chretien M., Seidah N. G., Polak J. M., Bloom S. R. Ontogeny of a novel pituitary protein (7B2) in the human fetal intestine. Regul Pept. 1985 Nov 28;12(4):289–296. doi: 10.1016/0167-0115(85)90172-7. [DOI] [PubMed] [Google Scholar]
  141. Suzuki H., Christofides N. D., Anand P., Chretien M., Seidah N. G., Polak J. M., Bloom S. R. Regional distribution of a novel pituitary protein (7B2) in the rat spinal cord: effect of neonatal capsaicin treatment and thoracic cord transection. Neurosci Lett. 1985 Apr 9;55(2):151–156. doi: 10.1016/0304-3940(85)90011-4. [DOI] [PubMed] [Google Scholar]
  142. Suzuki H., Christofides N. D., Chretien M., Seidah N. G., Polak J. M., Bloom S. R. Developmental changes in immunoreactive content of novel pituitary protein 7B2 in human pancreas and its identification in pancreatic tumors. Diabetes. 1987 Nov;36(11):1276–1279. doi: 10.2337/diab.36.11.1276. [DOI] [PubMed] [Google Scholar]
  143. Suzuki H., Christofides N. D., Ghiglione M., Ferri G. L., Chretien M., Seidah N. G., Polak J. M., Bloom S. R. Distribution of a novel pituitary protein (7B2) in mammalian gastrointestinal tract and pancreas. Dig Dis Sci. 1988 Jun;33(6):718–723. doi: 10.1007/BF01540436. [DOI] [PubMed] [Google Scholar]
  144. Suzuki H., Ghatei M. A., Williams S. J., Uttenthal L. O., Facer P., Bishop A. E., Polak J. M., Bloom S. R. Production of pituitary protein 7B2 immunoreactivity by endocrine tumors and its possible diagnostic value. J Clin Endocrinol Metab. 1986 Sep;63(3):758–765. doi: 10.1210/jcem-63-3-758. [DOI] [PubMed] [Google Scholar]
  145. Suzuki H., Kobori H., Ohtake R., Hashigami Y., Suzuki Y., Shimoda S. I., Bloom S. R. Circulating concentrations of immunoreactive peptide 7B2 in certain pathophysiological conditions, and response to oral glucose load. Clin Chem. 1988 Feb;34(2):410–413. [PubMed] [Google Scholar]
  146. Suzuki H., Sato S., Suzuki Y., Ohtake R., Hashigami Y., Namba J., Ishihara N., Shimoda S. Pituitary protein 7B2-like immunoreactivity in cerebrospinal fluid: comparison with other neuropeptides. J Lab Clin Med. 1989 Jun;113(6):743–748. [PubMed] [Google Scholar]
  147. Suzuki H., Tischler A. S., Christofides N. D., Chretien M., Seidah N. G., Polak J. M., Bloom S. R. A novel pituitary protein (7B2)-like immunoreactivity is secreted by a rat phaeochromocytoma cell line (PC12). J Endocrinol. 1986 Jan;108(1):151–155. doi: 10.1677/joe.0.1080151. [DOI] [PubMed] [Google Scholar]
  148. Suzuki Y., Sato S., Suzuki H., Namba J., Ohtake R., Hashigami Y., Suga S., Ishihara N., Shimoda S. Increased neuropeptide Y concentrations in cerebrospinal fluid from patients with aneurysmal subarachnoid hemorrhage. Stroke. 1989 Dec;20(12):1680–1684. doi: 10.1161/01.str.20.12.1680. [DOI] [PubMed] [Google Scholar]
  149. Sánchez-Montesinos I., Mérida-Velasco J. A., Espín-Ferra J., Scopsi L. Development of the sympathoadrenal system in the chick embryo: an immunocytochemical study with antibodies to pan-neuroendocrine markers, catecholamine-synthesizing enzymes, proprotein-processing enzymes, and neuropeptides. Anat Rec. 1996 May;245(1):94–101. doi: 10.1002/(SICI)1097-0185(199605)245:1<94::AID-AR14>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  150. Takumi I., Steiner D. F., Sanno N., Teramoto A., Osamura R. Y. Localization of prohormone convertases 1/3 and 2 in the human pituitary gland and pituitary adenomas: analysis by immunohistochemistry, immunoelectron microscopy, and laser scanning microscopy. Mod Pathol. 1998 Mar;11(3):232–238. [PubMed] [Google Scholar]
  151. Tomita Tatsuo. Immunocytochemical Localization of Prohormone Convertase 1/3 and 2 in Thyroid C-Cells and Medullary Thyroid Carcinomas. Endocr Pathol. 2000 Summer;11(2):165–172. doi: 10.1385/ep:11:2:165. [DOI] [PubMed] [Google Scholar]
  152. Tsuchiya T., Suzuki Y., Suzuki H., Ohtake R., Shimoda S. I. Changes in adrenal neuropeptides content [peptide 7B2, neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP)] induced by pharmacological and hormonal manipulations. J Endocrinol Invest. 1990 May;13(5):381–389. doi: 10.1007/BF03350684. [DOI] [PubMed] [Google Scholar]
  153. Van Horssen A. M., Martens G. J. Mapping of the domain in the neuroendocrine protein 7B2 important for its helper function towards prohormone convertase PC2. Mol Cell Endocrinol. 1998 Feb;137(1):7–12. doi: 10.1016/s0303-7207(97)00237-2. [DOI] [PubMed] [Google Scholar]
  154. Van Horssen A. M., Van Kuppeveld F. J., Martens G. J. Manipulation of disulfide bonds differentially affects the intracellular transport, sorting, and processing of neuroendocrine secretory proteins. J Neurochem. 1998 Jul;71(1):402–409. doi: 10.1046/j.1471-4159.1998.71010402.x. [DOI] [PubMed] [Google Scholar]
  155. Venetikou M. S., Ghatei M. A., Burrin J. M., Latif S., Bloom S. R. 7B2, a new protein secreted by human functionless pituitary tumours, in vitro. Acta Endocrinol (Copenh) 1988 Aug;118(4):521–527. doi: 10.1530/acta.0.1180521. [DOI] [PubMed] [Google Scholar]
  156. Vieau D., Linard C. G., Mbikay M., Lenne F., Chretien M., Luton J. P., Bertagna X. Expression of the neuroendocrine cell marker 7B2 in human ACTH secreting tumours. Clin Endocrinol (Oxf) 1992 Jun;36(6):597–603. doi: 10.1111/j.1365-2265.1992.tb02271.x. [DOI] [PubMed] [Google Scholar]
  157. Vieau D., Seidah N. G., Mbikay M., Chrétien M., Bertagna X. Expression of the prohormone convertase PC2 correlates with the presence of corticotropin-like intermediate lobe peptide in human adrenocorticotropin-secreting tumors. J Clin Endocrinol Metab. 1994 Nov;79(5):1503–1506. doi: 10.1210/jcem.79.5.7962350. [DOI] [PubMed] [Google Scholar]
  158. Waldbieser G. C., Aimi J., Dixon J. E. Cloning and characterization of the rat complementary deoxyribonucleic acid and gene encoding the neuroendocrine peptide 7B2. Endocrinology. 1991 Jun;128(6):3228–3236. doi: 10.1210/endo-128-6-3228. [DOI] [PubMed] [Google Scholar]
  159. Westphal C. H., Muller L., Zhou A., Zhu X., Bonner-Weir S., Schambelan M., Steiner D. F., Lindberg I., Leder P. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell. 1999 Mar 5;96(5):689–700. doi: 10.1016/s0092-8674(00)80579-6. [DOI] [PubMed] [Google Scholar]
  160. Zhong M., Benjannet S., Lazure C., Munzer S., Seidah N. G. Functional analysis of human PACE4-A and PACE4-C isoforms: identification of a new PACE4-CS isoform. FEBS Lett. 1996 Oct 28;396(1):31–36. doi: 10.1016/0014-5793(96)01059-9. [DOI] [PubMed] [Google Scholar]
  161. Zhong M., Munzer J. S., Basak A., Benjannet S., Mowla S. J., Decroly E., Chrétien M., Seidah N. G. The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J Biol Chem. 1999 Nov 26;274(48):33913–33920. doi: 10.1074/jbc.274.48.33913. [DOI] [PubMed] [Google Scholar]
  162. Zhou A., Mains R. E. Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2. J Biol Chem. 1994 Jul 1;269(26):17440–17447. [PubMed] [Google Scholar]
  163. Zhou A., Webb G., Zhu X., Steiner D. F. Proteolytic processing in the secretory pathway. J Biol Chem. 1999 Jul 23;274(30):20745–20748. doi: 10.1074/jbc.274.30.20745. [DOI] [PubMed] [Google Scholar]
  164. Zhu X., Lamango N. S., Lindberg I. Involvement of a polyproline helix-like structure in the interaction of 7B2 with prohormone convertase 2. J Biol Chem. 1996 Sep 20;271(38):23582–23587. doi: 10.1074/jbc.271.38.23582. [DOI] [PubMed] [Google Scholar]
  165. Zhu X., Lindberg I. 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity. J Cell Biol. 1995 Jun;129(6):1641–1650. doi: 10.1083/jcb.129.6.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Zhu X., Muller L., Mains R. E., Lindberg I. Structural elements of PC2 required for interaction with its helper protein 7B2. J Biol Chem. 1998 Jan 9;273(2):1158–1164. doi: 10.1074/jbc.273.2.1158. [DOI] [PubMed] [Google Scholar]
  167. Zhu X., Rouille Y., Lamango N. S., Steiner D. F., Lindberg I. Internal cleavage of the inhibitory 7B2 carboxyl-terminal peptide by PC2: a potential mechanism for its inactivation. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4919–4924. doi: 10.1073/pnas.93.10.4919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. van Duijnhoven H. L., Ayoubi T. A., Timmer E. D., Braks A. A., Roebroek A. J., Martens G. J., van de Ven W. J. Development of a monoclonal antibody against recombinant neuroendocrine 7B2 protein. FEBS Lett. 1989 Sep 25;255(2):372–376. doi: 10.1016/0014-5793(89)81125-1. [DOI] [PubMed] [Google Scholar]
  169. van Duijnhoven H. L., Verschuren M. C., Timmer E. D., Vissers P. M., Groeneveld A., Ayoubi T. A., van den Ouweland A. M., van de Ven W. J. Application of recombinant DNA technology in epitope mapping and targeting. Development and characterization of a panel of monoclonal antibodies against the 7B2 neuroendocrine protein. J Immunol Methods. 1991 Sep 13;142(2):187–198. doi: 10.1016/0022-1759(91)90106-p. [DOI] [PubMed] [Google Scholar]
  170. van Horssen A. M., van den Hurk W. H., Bailyes E. M., Hutton J. C., Martens G. J., Lindberg I. Identification of the region within the neuroendocrine polypeptide 7B2 responsible for the inhibition of prohormone convertase PC2. J Biol Chem. 1995 Jun 16;270(24):14292–14296. doi: 10.1074/jbc.270.24.14292. [DOI] [PubMed] [Google Scholar]
  171. van Leeuwen F. W. Mutant vasopressin precursor producing cells of the homozygous Brattleboro rat as a model for co-expression of neuropeptides. Prog Brain Res. 1992;92:149–155. doi: 10.1016/s0079-6123(08)61171-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES