Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):353–361. doi: 10.1042/0264-6021:3570353

Metalloprotease-disintegrin ADAM 12 interacts with alpha-actinin-1.

Y Cao 1, Q Kang 1, A Zolkiewska 1
PMCID: PMC1221961  PMID: 11439084

Abstract

ADAM 12, a member of the ADAM family of proteins (containing A Disintegrin And Metalloprotease domain), has been implicated in differentiation and fusion of myoblasts. While the extracellular domain of ADAM 12 contains an active metalloprotease and a region involved in cell adhesion, the function of the cytoplasmic tail of ADAM 12 has been less clear. Here we show that the cytoplasmic domain of ADAM 12 interacts in vitro and in vivo with alpha-actinin-1, an actin-binding and cross-linking protein. Green fluorescent protein fused to ADAM 12 cytoplasmic domain co-localizes with alpha-actinin-1-containing actin stress fibres in C2C12 cells. The interaction between ADAM 12 and alpha-actinin-1 is direct and involves the 58-amino acid C-terminal fragment of ADAM 12 and the 27 kDa N-terminal domain of alpha-actinin-1. Consistently, expression of the 27 kDa fragment of alpha-actinin-1 in C2C12 cells using a mitochondrial targeting system results in recruitment of the co-expressed ADAM 12 cytoplasmic domain to the mitochondrial surface. Moreover, alpha-actinin-1 co-purifies with a transmembrane, His6-tagged form of ADAM 12 expressed in C2C12 myoblasts, indicating that the transmembrane ADAM 12 forms a complex with alpha-actinin-1 in vivo. These results indicate that the actin cytoskeleton may play a critical role in ADAM 12-mediated cell-cell adhesion or cell signalling during myoblast differentiation and fusion.

Full Text

The Full Text of this article is available as a PDF (316.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe E., Mocharla H., Yamate T., Taguchi Y., Manolagas S. C. Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif Tissue Int. 1999 Jun;64(6):508–515. doi: 10.1007/s002239900641. [DOI] [PubMed] [Google Scholar]
  2. Arimura C., Suzuki T., Yanagisawa M., Imamura M., Hamada Y., Masaki T. Primary structure of chicken skeletal muscle and fibroblast alpha-actinins deduced from cDNA sequences. Eur J Biochem. 1988 Nov 15;177(3):649–655. doi: 10.1111/j.1432-1033.1988.tb14419.x. [DOI] [PubMed] [Google Scholar]
  3. Black R. A., White J. M. ADAMs: focus on the protease domain. Curr Opin Cell Biol. 1998 Oct;10(5):654–659. doi: 10.1016/s0955-0674(98)80042-2. [DOI] [PubMed] [Google Scholar]
  4. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518. doi: 10.1146/annurev.cellbio.12.1.463. [DOI] [PubMed] [Google Scholar]
  5. Crawford A. W., Michelsen J. W., Beckerle M. C. An interaction between zyxin and alpha-actinin. J Cell Biol. 1992 Mar;116(6):1381–1393. doi: 10.1083/jcb.116.6.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Endo T., Masaki T. Differential expression and distribution of chicken skeletal- and smooth-muscle-type alpha-actinins during myogenesis in culture. J Cell Biol. 1984 Dec;99(6):2322–2332. doi: 10.1083/jcb.99.6.2322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galliano M. F., Huet C., Frygelius J., Polgren A., Wewer U. M., Engvall E. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion. J Biol Chem. 2000 May 5;275(18):13933–13939. doi: 10.1074/jbc.275.18.13933. [DOI] [PubMed] [Google Scholar]
  8. Gilpin B. J., Loechel F., Mattei M. G., Engvall E., Albrechtsen R., Wewer U. M. A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J Biol Chem. 1998 Jan 2;273(1):157–166. doi: 10.1074/jbc.273.1.157. [DOI] [PubMed] [Google Scholar]
  9. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  10. Heiska L., Kantor C., Parr T., Critchley D. R., Vilja P., Gahmberg C. G., Carpén O. Binding of the cytoplasmic domain of intercellular adhesion molecule-2 (ICAM-2) to alpha-actinin. J Biol Chem. 1996 Oct 18;271(42):26214–26219. doi: 10.1074/jbc.271.42.26214. [DOI] [PubMed] [Google Scholar]
  11. Iba K., Albrechtsen R., Gilpin B. J., Loechel F., Wewer U. M. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol. 1999 May;154(5):1489–1501. doi: 10.1016/s0002-9440(10)65403-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Inoue D., Reid M., Lum L., Krätzschmar J., Weskamp G., Myung Y. M., Baron R., Blobel C. P. Cloning and initial characterization of mouse meltrin beta and analysis of the expression of four metalloprotease-disintegrins in bone cells. J Biol Chem. 1998 Feb 13;273(7):4180–4187. doi: 10.1074/jbc.273.7.4180. [DOI] [PubMed] [Google Scholar]
  13. Kurisaki T., Masuda A., Osumi N., Nabeshima Y., Fujisawa-Sehara A. Spatially- and temporally-restricted expression of meltrin alpha (ADAM12) and beta (ADAM19) in mouse embryo. Mech Dev. 1998 May;73(2):211–215. doi: 10.1016/s0925-4773(98)00043-4. [DOI] [PubMed] [Google Scholar]
  14. Kusumi A., Suzuki K., Koyasako K. Mobility and cytoskeletal interactions of cell adhesion receptors. Curr Opin Cell Biol. 1999 Oct;11(5):582–590. doi: 10.1016/s0955-0674(99)00020-4. [DOI] [PubMed] [Google Scholar]
  15. Loechel F., Gilpin B. J., Engvall E., Albrechtsen R., Wewer U. M. Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem. 1998 Jul 3;273(27):16993–16997. doi: 10.1074/jbc.273.27.16993. [DOI] [PubMed] [Google Scholar]
  16. Mukai H., Toshimori M., Shibata H., Takanaga H., Kitagawa M., Miyahara M., Shimakawa M., Ono Y. Interaction of PKN with alpha-actinin. J Biol Chem. 1997 Feb 21;272(8):4740–4746. doi: 10.1074/jbc.272.8.4740. [DOI] [PubMed] [Google Scholar]
  17. Otey C. A., Pavalko F. M., Burridge K. An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J Cell Biol. 1990 Aug;111(2):721–729. doi: 10.1083/jcb.111.2.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pavalko F. M., Walker D. M., Graham L., Goheen M., Doerschuk C. M., Kansas G. S. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alpha-actinin. J Cell Biol. 1995 May;129(4):1155–1164. doi: 10.1083/jcb.129.4.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pomiès P., Louis H. A., Beckerle M. C. CRP1, a LIM domain protein implicated in muscle differentiation, interacts with alpha-actinin. J Cell Biol. 1997 Oct 6;139(1):157–168. doi: 10.1083/jcb.139.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reinhard M., Zumbrunn J., Jaquemar D., Kuhn M., Walter U., Trueb B. An alpha-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment. J Biol Chem. 1999 May 7;274(19):13410–13418. doi: 10.1074/jbc.274.19.13410. [DOI] [PubMed] [Google Scholar]
  21. Schlöndorff J., Blobel C. P. Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci. 1999 Nov;112(Pt 21):3603–3617. doi: 10.1242/jcs.112.21.3603. [DOI] [PubMed] [Google Scholar]
  22. Shibasaki F., Fukami K., Fukui Y., Takenawa T. Phosphatidylinositol 3-kinase binds to alpha-actinin through the p85 subunit. Biochem J. 1994 Sep 1;302(Pt 2):551–557. doi: 10.1042/bj3020551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tokuue Y., Goto S., Imamura M., Obinata T., Masaki T., Endo T. Transfection of chicken skeletal muscle alpha-actinin cDNA into nonmuscle and myogenic cells: dimerization is not essential for alpha-actinin to bind to microfilaments. Exp Cell Res. 1991 Dec;197(2):158–167. doi: 10.1016/0014-4827(91)90418-t. [DOI] [PubMed] [Google Scholar]
  24. Wolfsberg T. G., White J. M. ADAMs in fertilization and development. Dev Biol. 1996 Dec 15;180(2):389–401. doi: 10.1006/dbio.1996.0313. [DOI] [PubMed] [Google Scholar]
  25. Wyszynski M., Lin J., Rao A., Nigh E., Beggs A. H., Craig A. M., Sheng M. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 1997 Jan 30;385(6615):439–442. doi: 10.1038/385439a0. [DOI] [PubMed] [Google Scholar]
  26. Xia H., Winokur S. T., Kuo W. L., Altherr M. R., Bredt D. S. Actinin-associated LIM protein: identification of a domain interaction between PDZ and spectrin-like repeat motifs. J Cell Biol. 1997 Oct 20;139(2):507–515. doi: 10.1083/jcb.139.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yagami-Hiromasa T., Sato T., Kurisaki T., Kamijo K., Nabeshima Y., Fujisawa-Sehara A. A metalloprotease-disintegrin participating in myoblast fusion. Nature. 1995 Oct 19;377(6550):652–656. doi: 10.1038/377652a0. [DOI] [PubMed] [Google Scholar]
  28. Zolkiewska A. Disintegrin-like/cysteine-rich region of ADAM 12 is an active cell adhesion domain. Exp Cell Res. 1999 Nov 1;252(2):423–431. doi: 10.1006/excr.1999.4632. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES