Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):363–371. doi: 10.1042/0264-6021:3570363

Functional coupling between the caffeine/ryanodine-sensitive Ca2+ store and mitochondria in rat aortic smooth muscle cells.

O Vallot 1, L Combettes 1, A M Lompré 1
PMCID: PMC1221962  PMID: 11439085

Abstract

We investigated the role of mitochondria in the agonist-induced and/or caffeine-induced Ca2+ transients in rat aortic smooth muscle cells. We explored the possibility that proliferation modulates the coupling between mitochondria and endoplasmic reticulum. Ca2+ transients induced by either ATP or caffeine were measured in presence or absence of drugs interfering with mitochondrial activity in freshly dissociated cells (day 1) and in subconfluent primary culture (day 12). We found that the mitochondrial inhibitors, rotenone or carbonyl cyanide m-chlorophenylhydrazone, as well as the permeability transition pore inhibitor, cyclosporin A, had no effect on the ATP-induced Ca2+ transient at either day 1 or day 12, but prevented caffeine-induced cytosolic Ca2+ increase at day 12 but not at day 1. Close connections between ryanodine receptors and mitochondria were observed at both day 1 and 12. Thapsigargin (TG) prevented ATP- and caffeine-induced Ca2+ transients at day 1. At day 12, where only 50% of the cells were sensitive to caffeine, TG did not prevent the caffeine-induced Ca2+ transient, and prevented ATP-induced Ca2+ transient in only half of the cells. Together, these data demonstrate that rat aortic smooth muscle cells at day 1 have an ATP- and caffeine-sensitive pool, which is functionally independent but physically closely linked to mitochondria and totally inhibited by TG. At day 12, we propose the existence of two cell populations: half contains IP3 receptors and TG-sensitive Ca2+ pumps only; the other half contains, in addition to the IP3-sensitive pool independent from mitochondria, a caffeine-sensitive pool. This latter pool is linked to mitochondria through the permeability transition pore and is refilled by both TG-sensitive and insensitive mechanisms.

Full Text

The Full Text of this article is available as a PDF (230.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babcock D. F., Herrington J., Goodwin P. C., Park Y. B., Hille B. Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol. 1997 Feb 24;136(4):833–844. doi: 10.1083/jcb.136.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999 Oct;79(4):1127–1155. doi: 10.1152/physrev.1999.79.4.1127. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  4. Berridge M., Lipp P., Bootman M. Calcium signalling. Curr Biol. 1999 Mar 11;9(5):R157–R159. doi: 10.1016/s0960-9822(99)80101-8. [DOI] [PubMed] [Google Scholar]
  5. Budd S. L., Nicholls D. G. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem. 1996 Jan;66(1):403–411. doi: 10.1046/j.1471-4159.1996.66010403.x. [DOI] [PubMed] [Google Scholar]
  6. Coussin F., Macrez N., Morel J. L., Mironneau J. Requirement of ryanodine receptor subtypes 1 and 2 for Ca(2+)-induced Ca(2+) release in vascular myocytes. J Biol Chem. 2000 Mar 31;275(13):9596–9603. doi: 10.1074/jbc.275.13.9596. [DOI] [PubMed] [Google Scholar]
  7. Drummond R. M., Tuft R. A. Release of Ca2+ from the sarcoplasmic reticulum increases mitochondrial [Ca2+] in rat pulmonary artery smooth muscle cells. J Physiol. 1999 Apr 1;516(Pt 1):139–147. doi: 10.1111/j.1469-7793.1999.139aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frid M. G., Aldashev A. A., Dempsey E. C., Stenmark K. R. Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circ Res. 1997 Dec;81(6):940–952. doi: 10.1161/01.res.81.6.940. [DOI] [PubMed] [Google Scholar]
  9. Gollasch M., Wellman G. C., Knot H. J., Jaggar J. H., Damon D. H., Bonev A. D., Nelson M. T. Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events. Circ Res. 1998 Nov 30;83(11):1104–1114. doi: 10.1161/01.res.83.11.1104. [DOI] [PubMed] [Google Scholar]
  10. Golovina V. A., Blaustein M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997 Mar 14;275(5306):1643–1648. doi: 10.1126/science.275.5306.1643. [DOI] [PubMed] [Google Scholar]
  11. Ichas F., Jouaville L. S., Mazat J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997 Jun 27;89(7):1145–1153. doi: 10.1016/s0092-8674(00)80301-3. [DOI] [PubMed] [Google Scholar]
  12. Jaconi M., Bony C., Richards S. M., Terzic A., Arnaudeau S., Vassort G., Pucéat M. Inositol 1,4,5-trisphosphate directs Ca(2+) flow between mitochondria and the Endoplasmic/Sarcoplasmic reticulum: a role in regulating cardiac autonomic Ca(2+) spiking. Mol Biol Cell. 2000 May;11(5):1845–1858. doi: 10.1091/mbc.11.5.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jouaville L. S., Ichas F., Holmuhamedov E. L., Camacho P., Lechleiter J. D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature. 1995 Oct 5;377(6548):438–441. doi: 10.1038/377438a0. [DOI] [PubMed] [Google Scholar]
  14. Landolfi B., Curci S., Debellis L., Pozzan T., Hofer A. M. Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured In situ in intact cells. J Cell Biol. 1998 Sep 7;142(5):1235–1243. doi: 10.1083/jcb.142.5.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  16. Lytton J., Westlin M., Hanley M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991 Sep 15;266(26):17067–17071. [PubMed] [Google Scholar]
  17. Marks A. R. Cellular functions of immunophilins. Physiol Rev. 1996 Jul;76(3):631–649. doi: 10.1152/physrev.1996.76.3.631. [DOI] [PubMed] [Google Scholar]
  18. Marty I., Robert M., Villaz M., De Jongh K., Lai Y., Catterall W. A., Ronjat M. Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2270–2274. doi: 10.1073/pnas.91.6.2270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mason M. J., Garcia-Rodriguez C., Grinstein S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J Biol Chem. 1991 Nov 5;266(31):20856–20862. [PubMed] [Google Scholar]
  20. McCarron J. G., Muir T. C. Mitochondrial regulation of the cytosolic Ca2+ concentration and the InsP3-sensitive Ca2+ store in guinea-pig colonic smooth muscle. J Physiol. 1999 Apr 1;516(Pt 1):149–161. doi: 10.1111/j.1469-7793.1999.149aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mironneau J., Coussin F., Jeyakumar L. H., Fleischer S., Mironneau C., Macrez N. Contribution of ryanodine receptor subtype 3 to ca2+ responses in Ca2+-overloaded cultured rat portal vein myocytes. J Biol Chem. 2001 Jan 9;276(14):11257–11264. doi: 10.1074/jbc.M005994200. [DOI] [PubMed] [Google Scholar]
  22. Monteith G. R., Blaustein M. P. Heterogeneity of mitochondrial matrix free ca2+: resolution of Ca2+ dynamics in individual mitochondria in situ. Am J Physiol. 1999 May;276(5 Pt 1):C1193–C1204. doi: 10.1152/ajpcell.1999.276.5.C1193. [DOI] [PubMed] [Google Scholar]
  23. Nassar A., Simpson A. W. Elevation of mitochondrial calcium by ryanodine-sensitive calcium-induced calcium release. J Biol Chem. 2000 Aug 4;275(31):23661–23665. doi: 10.1074/jbc.M000457200. [DOI] [PubMed] [Google Scholar]
  24. Neusser M., Golinski P., Zhu Z., Zidek W., Tepel M. Thapsigargin-insensitive calcium pools in vascular smooth muscle cells. Clin Exp Hypertens. 1999 May;21(4):395–405. doi: 10.3109/10641969909068672. [DOI] [PubMed] [Google Scholar]
  25. Nicolli A., Basso E., Petronilli V., Wenger R. M., Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 1996 Jan 26;271(4):2185–2192. doi: 10.1074/jbc.271.4.2185. [DOI] [PubMed] [Google Scholar]
  26. Rishi A. K., Yu M., Tsai-Wu J. J., Belani C. P., Fontana J. A., Baker D. L., Periasamy M., Hussain A. Gene amplification and transcriptional upregulation of the sarco/endoplasmic reticulum Ca2+ transport ATPase in thapsigargin-resistant hamster smooth muscle cells. Nucleic Acids Res. 1998 Oct 1;26(19):4529–4537. doi: 10.1093/nar/26.19.4529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rizzuto R., Brini M., Murgia M., Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993 Oct 29;262(5134):744–747. doi: 10.1126/science.8235595. [DOI] [PubMed] [Google Scholar]
  28. Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., Tuft R. A., Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998 Jun 12;280(5370):1763–1766. doi: 10.1126/science.280.5370.1763. [DOI] [PubMed] [Google Scholar]
  29. Rutter G. A., Rizzuto R. Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci. 2000 May;25(5):215–221. doi: 10.1016/s0968-0004(00)01585-1. [DOI] [PubMed] [Google Scholar]
  30. Simpson P. B., Mehotra S., Lange G. D., Russell J. T. High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem. 1997 Sep 5;272(36):22654–22661. doi: 10.1074/jbc.272.36.22654. [DOI] [PubMed] [Google Scholar]
  31. Simpson P. B., Russell J. T. Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. J Biol Chem. 1996 Dec 27;271(52):33493–33501. doi: 10.1074/jbc.271.52.33493. [DOI] [PubMed] [Google Scholar]
  32. Sparagna G. C., Gunter K. K., Sheu S. S., Gunter T. E. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem. 1995 Nov 17;270(46):27510–27515. doi: 10.1074/jbc.270.46.27510. [DOI] [PubMed] [Google Scholar]
  33. Szalai G., Csordás G., Hantash B. M., Thomas A. P., Hajnóczky G. Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem. 2000 May 19;275(20):15305–15313. doi: 10.1074/jbc.275.20.15305. [DOI] [PubMed] [Google Scholar]
  34. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tong J., Du G. G., Chen S. R., MacLennan D. H. HEK-293 cells possess a carbachol- and thapsigargin-sensitive intracellular Ca2+ store that is responsive to stop-flow medium changes and insensitive to caffeine and ryanodine. Biochem J. 1999 Oct 1;343(Pt 1):39–44. [PMC free article] [PubMed] [Google Scholar]
  36. Tribe R. M., Borin M. L., Blaustein M. P. Functionally and spatially distinct Ca2+ stores are revealed in cultured vascular smooth muscle cells. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5908–5912. doi: 10.1073/pnas.91.13.5908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vallot O., Combettes L., Jourdon P., Inamo J., Marty I., Claret M., Lompré A. M. Intracellular Ca(2+) handling in vascular smooth muscle cells is affected by proliferation. Arterioscler Thromb Vasc Biol. 2000 May;20(5):1225–1235. doi: 10.1161/01.atv.20.5.1225. [DOI] [PubMed] [Google Scholar]
  38. Van Baelen K., Vanoevelen J., Missiaen L., Raeymaekers L., Wuytack F. The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J Biol Chem. 2000 Dec 29;276(14):10683–10691. doi: 10.1074/jbc.M010553200. [DOI] [PubMed] [Google Scholar]
  39. Waldron R. T., Short A. D., Gill D. L. Thapsigargin-resistant intracellular calcium pumps. Role in calcium pool function and growth of thapsigargin-resistant cells. J Biol Chem. 1995 May 19;270(20):11955–11961. doi: 10.1074/jbc.270.20.11955. [DOI] [PubMed] [Google Scholar]
  40. Wood P. G., Gillespie J. I. Evidence for mitochondrial Ca(2+)-induced Ca2+ release in permeabilised endothelial cells. Biochem Biophys Res Commun. 1998 May 19;246(2):543–548. doi: 10.1006/bbrc.1998.8661. [DOI] [PubMed] [Google Scholar]
  41. Yu M., Zhong L., Rishi A. K., Khadeer M., Inesi G., Hussain A., Zhang L. Specific substitutions at amino acid 256 of the sarcoplasmic/endoplasmic reticulum Ca2+ transport ATPase mediate resistance to thapsigargin in thapsigargin-resistant hamster cells. J Biol Chem. 1998 Feb 6;273(6):3542–3546. doi: 10.1074/jbc.273.6.3542. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES