Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):373–383. doi: 10.1042/0264-6021:3570373

Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis.

T H Tan 1, S A Edgerton 1, R Kumari 1, M S McAlister 1, S M Roe 1, S Nagl 1, L H Pearl 1, M E Selkirk 1, A E Bianco 1, N F Totty 1, C Engwerda 1, C A Gray 1, D J Meyer 1, S M Rowe 1
PMCID: PMC1221963  PMID: 11439086

Abstract

cDNAs were obtained for macrophage migration-inhibitory factor (MIF)/L-dopachrome methyl ester tautomerase homologues from the parasitic nematodes Trichinella spiralis (TsMIF) and Trichuris trichiura (TtMIF). The translated sequences, which were partly confirmed by sequencing of proteolytic fragments, show 42 and 44% identity respectively with human or mouse MIF, and are shorter by one C-terminal residue. Unlike vertebrate MIF and MIF homologues of filarial nematodes, neither TsMIF nor TtMIF contain cysteine residues. Soluble recombinant TsMIF, expressed in Escherichia coli showed secondary structure (by CD spectroscopy) and quaternary structure (by light-scattering and gel filtration) similar to that of the trimeric mammalian MIFs and D-dopachrome tautomerase. The catalytic specificity of recombinant TsMIF in the ketonization of phenylpyruvate (1.4x10(6) M(-1) x s(-1)) was comparable with that of human MIF, while that of p-hydroxyphenylpyruvate (9.1x10(4) M(-1) x s(-1)) was 71-fold lower. TsMIF showed high specificity in tautomerization of the methyl ester of L-dopachrome compared with non-esterified L-dopachrome (>87000-fold) and a high kcat (approximately 4x10(4) s(-1). The crystal structure, determined to 1.65 A (1 A=0.1 nm), was generally similar to that of human MIF, but differed in the boundaries of the putative active-site pocket, which can explain the low activity towards p-hydroxyphenylpyruvate. The central pore was blocked, but was continuous, with the three putative tautomerase sites. Recombinant TsMIF (5 ng/ml-5 pg/ml) inhibited migration of human peripheral-blood mononuclear cells in a manner similar to that shown by human MIF, but had no effect from 5 to 500 ng/ml on anti-CD3-stimulated murine T-cell proliferation. TsMIF was detected in supernatants of T. spiralis larvae cultured in vitro at 6 ng/ml (55 ng/mg total secreted protein). In conclusion TsMIF has structural, catalytic and cell-migration-inhibitory properties which indicate that it is partially orthologous to mammalian MIF.

Full Text

The Full Text of this article is available as a PDF (333.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apte R. S., Sinha D., Mayhew E., Wistow G. J., Niederkorn J. Y. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol. 1998 Jun 15;160(12):5693–5696. [PubMed] [Google Scholar]
  2. Arden S. R., Smith A. M., Booth M. J., Tweedie S., Gounaris K., Selkirk M. E. Identification of serine/threonine protein kinases secreted by Trichinella spiralis infective larvae. Mol Biochem Parasitol. 1997 Dec 1;90(1):111–119. doi: 10.1016/s0166-6851(97)00145-x. [DOI] [PubMed] [Google Scholar]
  3. Ashton D. S., Beddell C. R., Green B. N., Oliver R. W. Rapid validation of molecular structures of biological samples by electrospray-mass spectrometry. FEBS Lett. 1994 Mar 28;342(1):1–6. doi: 10.1016/0014-5793(94)80572-5. [DOI] [PubMed] [Google Scholar]
  4. Bacher M., Metz C. N., Calandra T., Mayer K., Chesney J., Lohoff M., Gemsa D., Donnelly T., Bucala R. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7849–7854. doi: 10.1073/pnas.93.15.7849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barriga O. O. Depression of cell-mediated immunity following inoculation of Trichinella spiralis extract in the mouse. Immunology. 1978 Jan;34(1):167–173. [PMC free article] [PubMed] [Google Scholar]
  6. Behnke J. M., Barnard C. J., Wakelin D. Understanding chronic nematode infections: evolutionary considerations, current hypotheses and the way forward. Int J Parasitol. 1992 Nov;22(7):861–907. doi: 10.1016/0020-7519(92)90046-n. [DOI] [PubMed] [Google Scholar]
  7. Bendrat K., Al-Abed Y., Callaway D. J., Peng T., Calandra T., Metz C. N., Bucala R. Biochemical and mutational investigations of the enzymatic activity of macrophage migration inhibitory factor. Biochemistry. 1997 Dec 9;36(49):15356–15362. doi: 10.1021/bi971153a. [DOI] [PubMed] [Google Scholar]
  8. Bozza M., Satoskar A. R., Lin G., Lu B., Humbles A. A., Gerard C., David J. R. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med. 1999 Jan 18;189(2):341–346. doi: 10.1084/jem.189.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 1980 Apr;138(2):149–178. doi: 10.1016/0022-2836(80)90282-x. [DOI] [PubMed] [Google Scholar]
  10. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  11. Calandra T., Bernhagen J., Metz C. N., Spiegel L. A., Bacher M., Donnelly T., Cerami A., Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995 Sep 7;377(6544):68–71. doi: 10.1038/377068a0. [DOI] [PubMed] [Google Scholar]
  12. Chesney J., Metz C., Bacher M., Peng T., Meinhardt A., Bucala R. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med. 1999 Mar;5(3):181–191. [PMC free article] [PubMed] [Google Scholar]
  13. Coggan M., Whitbread L., Whittington A., Board P. Structure and organization of the human theta-class glutathione S-transferase and D-dopachrome tautomerase gene complex. Biochem J. 1998 Sep 15;334(Pt 3):617–623. doi: 10.1042/bj3340617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cunha F. Q., Weiser W. Y., David J. R., Moss D. W., Moncada S., Liew F. Y. Recombinant migration inhibitory factor induces nitric oxide synthase in murine macrophages. J Immunol. 1993 Mar 1;150(5):1908–1912. [PubMed] [Google Scholar]
  15. Esnouf R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):938–940. doi: 10.1107/s0907444998017363. [DOI] [PubMed] [Google Scholar]
  16. Esumi N., Budarf M., Ciccarelli L., Sellinger B., Kozak C. A., Wistow G. Conserved gene structure and genomic linkage for D-dopachrome tautomerase (DDT) and MIF. Mamm Genome. 1998 Sep;9(9):753–757. doi: 10.1007/s003359900858. [DOI] [PubMed] [Google Scholar]
  17. Gerencer M., Marinculić A., Rapić D., Franković M., Valpotić I. Immunosuppression of in vivo and in vitro lymphocyte responses in swine induced by Trichinella spiralis or excretory-secretory antigens of the parasite. Vet Parasitol. 1992 Oct;44(3-4):263–273. doi: 10.1016/0304-4017(92)90121-o. [DOI] [PubMed] [Google Scholar]
  18. Hennessey J. P., Jr, Johnson W. C., Jr Experimental errors and their effect on analyzing circular dichroism spectra of proteins. Anal Biochem. 1982 Sep 1;125(1):177–188. doi: 10.1016/0003-2697(82)90400-6. [DOI] [PubMed] [Google Scholar]
  19. Hudson J. D., Shoaibi M. A., Maestro R., Carnero A., Hannon G. J., Beach D. H. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med. 1999 Nov 15;190(10):1375–1382. doi: 10.1084/jem.190.10.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson W. H., Jr, Czerwinski R. M., Stamps S. L., Whitman C. P. A kinetic and stereochemical investigation of the role of lysine-32 in the phenylpyruvate tautomerase activity catalyzed by macrophage migration inhibitory factor. Biochemistry. 1999 Nov 30;38(48):16024–16033. doi: 10.1021/bi991825s. [DOI] [PubMed] [Google Scholar]
  21. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  22. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  23. Kato Y., Muto T., Tomura T., Tsumura H., Watarai H., Mikayama T., Ishizaka K., Kuroki R. The crystal structure of human glycosylation-inhibiting factor is a trimeric barrel with three 6-stranded beta-sheets. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3007–3010. doi: 10.1073/pnas.93.7.3007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kleemann R., Hausser A., Geiger G., Mischke R., Burger-Kentischer A., Flieger O., Johannes F. J., Roger T., Calandra T., Kapurniotu A. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature. 2000 Nov 9;408(6809):211–216. doi: 10.1038/35041591. [DOI] [PubMed] [Google Scholar]
  25. Kleemann R., Kapurniotu A., Frank R. W., Gessner A., Mischke R., Flieger O., Jüttner S., Brunner H., Bernhagen J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol. 1998 Jul 3;280(1):85–102. doi: 10.1006/jmbi.1998.1864. [DOI] [PubMed] [Google Scholar]
  26. Lubetsky J. B., Swope M., Dealwis C., Blake P., Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity. Biochemistry. 1999 Jun 1;38(22):7346–7354. doi: 10.1021/bi990306m. [DOI] [PubMed] [Google Scholar]
  27. Maizels R. M., Bundy D. A., Selkirk M. E., Smith D. F., Anderson R. M. Immunological modulation and evasion by helminth parasites in human populations. Nature. 1993 Oct 28;365(6449):797–805. doi: 10.1038/365797a0. [DOI] [PubMed] [Google Scholar]
  28. Mak C. H., Ko R. C. Characterization of endonuclease activity from excretory/secretory products of a parasitic nematode, Trichinella spiralis. Eur J Biochem. 1999 Mar;260(2):477–481. doi: 10.1046/j.1432-1327.1999.00174.x. [DOI] [PubMed] [Google Scholar]
  29. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  30. Mischke R., Gessner A., Kapurniotu A., Jüttner S., Kleemann R., Brunner H., Bernhagen J. Structure activity studies of the cytokine macrophage migration inhibitory factor (MIF) reveal a critical role for its carboxy terminus. FEBS Lett. 1997 Sep 8;414(2):226–232. doi: 10.1016/s0014-5793(97)01039-9. [DOI] [PubMed] [Google Scholar]
  31. Mitchell R. A., Metz C. N., Peng T., Bucala R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem. 1999 Jun 18;274(25):18100–18106. doi: 10.1074/jbc.274.25.18100. [DOI] [PubMed] [Google Scholar]
  32. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  33. Pastrana D. V., Raghavan N., FitzGerald P., Eisinger S. W., Metz C., Bucala R., Schleimer R. P., Bickel C., Scott A. L. Filarial nematode parasites secrete a homologue of the human cytokine macrophage migration inhibitory factor. Infect Immun. 1998 Dec;66(12):5955–5963. doi: 10.1128/iai.66.12.5955-5963.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pennock J. L., Behnke J. M., Bickle Q. D., Devaney E., Grencis R. K., Isaac R. E., Joshua G. W., Selkirk M. E., Zhang Y., Meyer D. J. Rapid purification and characterization of L-dopachrome-methyl ester tautomerase (macrophage-migration-inhibitory factor) from Trichinella spiralis, Trichuris muris and Brugia pahangi. Biochem J. 1998 Nov 1;335(Pt 3):495–498. doi: 10.1042/bj3350495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pennock J. L., Wipasa J., Gordge M. P., Meyer D. J. Interaction of macrophage-migration-inhibitory factor with haematin. Biochem J. 1998 May 1;331(Pt 3):905–908. doi: 10.1042/bj3310905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Su X. Z., Prestwood A. K., McGraw R. A. Cloning and expression of complementary DNA encoding an antigen of Trichinella spiralis. Mol Biochem Parasitol. 1991 Apr;45(2):331–336. doi: 10.1016/0166-6851(91)90101-b. [DOI] [PubMed] [Google Scholar]
  37. Sugimoto H., Taniguchi M., Nakagawa A., Tanaka I., Suzuki M., Nishihira J. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 A resolution. Biochemistry. 1999 Mar 16;38(11):3268–3279. doi: 10.1021/bi982184o. [DOI] [PubMed] [Google Scholar]
  38. Sun H. W., Bernhagen J., Bucala R., Lolis E. Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5191–5196. doi: 10.1073/pnas.93.11.5191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sun H. W., Swope M., Cinquina C., Bedarkar S., Bernhagen J., Bucala R., Lolis E. The subunit structure of human macrophage migration inhibitory factor: evidence for a trimer. Protein Eng. 1996 Aug;9(8):631–635. doi: 10.1093/protein/9.8.631. [DOI] [PubMed] [Google Scholar]
  40. Tanaka N., Kaneko K., Asao H., Kasai H., Endo Y., Fujita T., Takeshita T., Sugamura K. Possible involvement of a novel STAM-associated molecule "AMSH" in intracellular signal transduction mediated by cytokines. J Biol Chem. 1999 Jul 2;274(27):19129–19135. doi: 10.1074/jbc.274.27.19129. [DOI] [PubMed] [Google Scholar]
  41. Taylor A. B., Johnson W. H., Jr, Czerwinski R. M., Li H. S., Hackert M. L., Whitman C. P. Crystal structure of macrophage migration inhibitory factor complexed with (E)-2-fluoro-p-hydroxycinnamate at 1.8 A resolution: implications for enzymatic catalysis and inhibition. Biochemistry. 1999 Jun 8;38(23):7444–7452. doi: 10.1021/bi9904048. [DOI] [PubMed] [Google Scholar]
  42. Tomura T., Watarai H., Honma N., Sato M., Iwamatsu A., Kato Y., Kuroki R., Nakano T., Mikayama T., Ishizaka K. Immunosuppressive activities of recombinant glycosylation-inhibiting factor mutants. J Immunol. 1999 Jan 1;162(1):195–202. [PubMed] [Google Scholar]
  43. Totty N. F., Waterfield M. D., Hsuan J. J. Accelerated high-sensitivity microsequencing of proteins and peptides using a miniature reaction cartridge. Protein Sci. 1992 Sep;1(9):1215–1224. doi: 10.1002/pro.5560010914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Waeber G., Calandra T., Roduit R., Haefliger J. A., Bonny C., Thompson N., Thorens B., Temler E., Meinhardt A., Bacher M. Insulin secretion is regulated by the glucose-dependent production of islet beta cell macrophage migration inhibitory factor. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4782–4787. doi: 10.1073/pnas.94.9.4782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wallace B. A., Teeters C. L. Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. Biochemistry. 1987 Jan 13;26(1):65–70. doi: 10.1021/bi00375a010. [DOI] [PubMed] [Google Scholar]
  46. Watarai H., Nozawa R., Tokunaga A., Yuyama N., Tomas M., Hinohara A., Ishizaka K., Ishii Y. Posttranslational modification of the glycosylation inhibiting factor (GIF) gene product generates bioactive GIF. Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13251–13256. doi: 10.1073/pnas.230445397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES