Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):417–426. doi: 10.1042/0264-6021:3570417

Phenotype-genotype relationships in peroxisome biogenesis disorders of PEX1-defective complementation group 1 are defined by Pex1p-Pex6p interaction.

S Tamura 1, N Matsumoto 1, A Imamura 1, N Shimozawa 1, Y Suzuki 1, N Kondo 1, Y Fujiki 1
PMCID: PMC1221968  PMID: 11439091

Abstract

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS), neonatal adrenoleucodystrophy (NALD) and infantile Refsum disease (IRD), are fatal autosomal recessive diseases caused by impaired peroxisome biogenesis, of which 12 genotypes have been reported. ZS patients manifest the severest clinical and biochemical abnormalities, whereas those with NALD and IRD show less severity and the mildest features respectively. We have reported previously that temperature-sensitive peroxisome assembly is responsible for the mildness of the clinical features of IRD. PEX1 is the causative gene for PBDs of complementation group E (CG-E, CG1 in the U.S.A. and Europe), the PBDs of highest incidence, encoding the peroxin Pex1p of the AAA ATPase family. It has been also reported that Pex1p and Pex6p interact with each other. In the present study we investigated phenotype-genotype relationships of CG1 PBDs. Pex1p from IRD such as Pex1p with the most frequently identified mutation at G843D was largely degraded in vivo at 37 degrees C, whereas a normal level of Pex1p was detectable at the permissive temperature. In contrast, PEX1 proteins derived from ZS patients, including proteins with a mutation at L664P or the deletion of residues 634-690, were stably present at both temperatures. Pex1p-G843D interacted with Pex6p at approx. 50% of the level of normal Pex1p, whereas Pex1p from ZS patients mostly showing non-temperature-sensitive peroxisome biogenesis hardly bound to Pex6p. Taking these results together, we consider it most likely that the stability of Pex1p reflects temperature-sensitive peroxisome assembly in IRD fibroblasts. Failure in Pex1p-Pex6p interaction gives rise to more severe abnormalities, such as those manifested by patients with ZS.

Full Text

The Full Text of this article is available as a PDF (430.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braverman N., Dodt G., Gould S. J., Valle D. Disorders of peroxisome biogenesis. Hum Mol Genet. 1995;4(Spec No):1791–1798. doi: 10.1093/hmg/4.suppl_1.1791. [DOI] [PubMed] [Google Scholar]
  2. Dietz H. C., Valle D., Francomano C. A., Kendzior R. J., Jr, Pyeritz R. E., Cutting G. R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. doi: 10.1126/science.8430317. [DOI] [PubMed] [Google Scholar]
  3. Faber K. N., Heyman J. A., Subramani S. Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol Cell Biol. 1998 Feb;18(2):936–943. doi: 10.1128/mcb.18.2.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fujiki Y. Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS Lett. 2000 Jun 30;476(1-2):42–46. doi: 10.1016/s0014-5793(00)01667-7. [DOI] [PubMed] [Google Scholar]
  5. Fukuda S., Shimozawa N., Suzuki Y., Zhang Z., Tomatsu S., Tsukamoto T., Hashiguchi N., Osumi T., Masuno M., Imaizumi K. Human peroxisome assembly factor-2 (PAF-2): a gene responsible for group C peroxisome biogenesis disorder in humans. Am J Hum Genet. 1996 Dec;59(6):1210–1220. [PMC free article] [PubMed] [Google Scholar]
  6. Geisbrecht B. V., Collins C. S., Reuber B. E., Gould S. J. Disruption of a PEX1-PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8630–8635. doi: 10.1073/pnas.95.15.8630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ghaedi K., Honsho M., Shimozawa N., Suzuki Y., Kondo N., Fujiki Y. PEX3 is the causal gene responsible for peroxisome membrane assembly-defective Zellweger syndrome of complementation group G. Am J Hum Genet. 2000 Aug 31;67(4):976–981. doi: 10.1086/303086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghaedi K., Kawai A., Okumoto K., Tamura S., Shimozawa N., Suzuki Y., Kondo N., Fujiki Y. Isolation and characterization of novel peroxisome biogenesis-defective Chinese hamster ovary cell mutants using green fluorescent protein. Exp Cell Res. 1999 May 1;248(2):489–497. doi: 10.1006/excr.1999.4413. [DOI] [PubMed] [Google Scholar]
  9. Ghaedi K., Tamura S., Okumoto K., Matsuzono Y., Fujiki Y. The peroxin pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell. 2000 Jun;11(6):2085–2102. doi: 10.1091/mbc.11.6.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gould S. J., Valle D. Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet. 2000 Aug;16(8):340–345. doi: 10.1016/s0168-9525(00)02056-4. [DOI] [PubMed] [Google Scholar]
  11. Imamura A., Tamura S., Shimozawa N., Suzuki Y., Zhang Z., Tsukamoto T., Orii T., Kondo N., Osumi T., Fujiki Y. Temperature-sensitive mutation in PEX1 moderates the phenotypes of peroxisome deficiency disorders. Hum Mol Genet. 1998 Dec;7(13):2089–2094. doi: 10.1093/hmg/7.13.2089. [DOI] [PubMed] [Google Scholar]
  12. Imamura A., Tsukamoto T., Shimozawa N., Suzuki Y., Zhang Z., Imanaka T., Fujiki Y., Orii T., Kondo N., Osumi T. Temperature-sensitive phenotypes of peroxisome-assembly processes represent the milder forms of human peroxisome-biogenesis disorders. Am J Hum Genet. 1998 Jun;62(6):1539–1543. doi: 10.1086/301881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kinoshita N., Ghaedi K., Shimozawa N., Wanders R. J., Matsuzono Y., Imanaka T., Okumoto K., Suzuki Y., Kondo N., Fujiki Y. Newly identified Chinese hamster ovary cell mutants are defective in biogenesis of peroxisomal membrane vesicles (Peroxisomal ghosts), representing a novel complementation group in mammals. J Biol Chem. 1998 Sep 11;273(37):24122–24130. doi: 10.1074/jbc.273.37.24122. [DOI] [PubMed] [Google Scholar]
  14. Lin C. L., Bristol L. A., Jin L., Dykes-Hoberg M., Crawford T., Clawson L., Rothstein J. D. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron. 1998 Mar;20(3):589–602. doi: 10.1016/s0896-6273(00)80997-6. [DOI] [PubMed] [Google Scholar]
  15. Miyazawa S., Osumi T., Hashimoto T., Ohno K., Miura S., Fujiki Y. Peroxisome targeting signal of rat liver acyl-coenzyme A oxidase resides at the carboxy terminus. Mol Cell Biol. 1989 Jan;9(1):83–91. doi: 10.1128/mcb.9.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muntau A. C., Mayerhofer P. U., Paton B. C., Kammerer S., Roscher A. A. Defective peroxisome membrane synthesis due to mutations in human PEX3 causes Zellweger syndrome, complementation group G. Am J Hum Genet. 2000 Aug 24;67(4):967–975. doi: 10.1086/303071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Osumi T., Tsukamoto T., Hata S., Yokota S., Miura S., Fujiki Y., Hijikata M., Miyazawa S., Hashimoto T. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem Biophys Res Commun. 1991 Dec 31;181(3):947–954. doi: 10.1016/0006-291x(91)92028-i. [DOI] [PubMed] [Google Scholar]
  18. Otera H., Okumoto K., Tateishi K., Ikoma Y., Matsuda E., Nishimura M., Tsukamoto T., Osumi T., Ohashi K., Higuchi O. Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol Cell Biol. 1998 Jan;18(1):388–399. doi: 10.1128/mcb.18.1.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shimozawa N., Suzuki Y., Zhang Z., Imamura A., Ghaedi K., Fujiki Y., Kondo N. Identification of PEX3 as the gene mutated in a Zellweger syndrome patient lacking peroxisomal remnant structures. Hum Mol Genet. 2000 Aug 12;9(13):1995–1999. doi: 10.1093/hmg/9.13.1995. [DOI] [PubMed] [Google Scholar]
  20. Shimozawa N., Suzuki Y., Zhang Z., Imamura A., Kondo N., Kinoshita N., Fujiki Y., Tsukamoto T., Osumi T., Imanaka T. Genetic basis of peroxisome-assembly mutants of humans, Chinese hamster ovary cells, and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts. Am J Hum Genet. 1998 Dec;63(6):1898–1903. doi: 10.1086/302142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shimozawa N., Tsukamoto T., Suzuki Y., Orii T., Fujiki Y. Animal cell mutants represent two complementation groups of peroxisome-defective Zellweger syndrome. J Clin Invest. 1992 Nov;90(5):1864–1870. doi: 10.1172/JCI116063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shimozawa N., Tsukamoto T., Suzuki Y., Orii T., Shirayoshi Y., Mori T., Fujiki Y. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science. 1992 Feb 28;255(5048):1132–1134. doi: 10.1126/science.1546315. [DOI] [PubMed] [Google Scholar]
  23. South S. T., Sacksteder K. A., Li X., Liu Y., Gould S. J. Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J Cell Biol. 2000 Jun 26;149(7):1345–1360. doi: 10.1083/jcb.149.7.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Subramani S. PEX genes on the rise. Nat Genet. 1997 Apr;15(4):331–333. doi: 10.1038/ng0497-331. [DOI] [PubMed] [Google Scholar]
  25. Swinkels B. W., Gould S. J., Bodnar A. G., Rachubinski R. A., Subramani S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 1991 Nov;10(11):3255–3262. doi: 10.1002/j.1460-2075.1991.tb04889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tamura S., Okumoto K., Toyama R., Shimozawa N., Tsukamoto T., Suzuki Y., Osumi T., Kondo N., Fujiki Y. Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4350–4355. doi: 10.1073/pnas.95.8.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tamura S., Shimozawa N., Suzuki Y., Tsukamoto T., Osumi T., Fujiki Y. A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p. Biochem Biophys Res Commun. 1998 Apr 28;245(3):883–886. doi: 10.1006/bbrc.1998.8522. [DOI] [PubMed] [Google Scholar]
  28. Titorenko V. I., Chan H., Rachubinski R. A. Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J Cell Biol. 2000 Jan 10;148(1):29–44. doi: 10.1083/jcb.148.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tsukamoto T., Yokota S., Fujiki Y. Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes. J Cell Biol. 1990 Mar;110(3):651–660. doi: 10.1083/jcb.110.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES