Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):447–455. doi: 10.1042/0264-6021:3570447

Cloning and characterization of the 5'-flanking region of the rat glutamate-cysteine ligase catalytic subunit.

H Yang 1, J Wang 1, Z Z Huang 1, X Ou 1, S C Lu 1
PMCID: PMC1221971  PMID: 11439094

Abstract

Glutamate-cysteine ligase (GCL), the rate-limiting enzyme in glutathione synthesis, is made up of two subunits, a catalytic (heavy) subunit (GCLC) and a modifier (light) subunit (GCLM), which are differentially regulated. Increased hepatic GCLC expression occurs during rapid growth, oxidative stress and after ethanol treatment. To facilitate studies of GCLC transcriptional regulation, we have cloned and characterized a 1.8 kb 5'-flanking region of the rat GCLC (GenBank accession number AF218362). A consensus TATA box and one transcriptional start site are located at 302 and 197 nucleotides upstream of the translational start site, respectively. The promoter contains consensus binding sites for many transcription factors including nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1). The rat GCLC promoter was able to efficiently drive luciferase expression in H4IIE cells. Sequential deletion analysis revealed that three DNA regions, -595 to -111, -1108 to -705 and -705 to -595, are involved in positive (the first two regions) and negative (the latter region) gene regulation. Specific protein binding to these regions was confirmed by DNase I footprinting and electrophoretic mobility-shift assays (EMSAs). Ethanol-fed livers exhibit increased protein binding to region -416 to -336 on DNase I footprinting analysis, which was found to be NF-kappaB and AP-1 on EMSA and supershift analysis. Acetaldehyde treatment of H4IIE cells led to a time- and dose-dependent increase in GCLC mRNA levels, binding of NF-kappaB and AP-1 to the GCLC promoter, and luciferase activity driven by the GCLC promoter fragment containing these binding sites.

Full Text

The Full Text of this article is available as a PDF (300.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bijur G. N., Davis R. E., Jope R. S. Rapid activation of heat shock factor-1 DNA binding by H2O2 and modulation by glutathione in human neuroblastoma and Alzheimer's disease cybrid cells. Brain Res Mol Brain Res. 1999 Jul 23;71(1):69–77. doi: 10.1016/s0169-328x(99)00168-0. [DOI] [PubMed] [Google Scholar]
  2. Cai J., Huang Z. Z., Lu S. C. Differential regulation of gamma-glutamylcysteine synthetase heavy and light subunit gene expression. Biochem J. 1997 Aug 15;326(Pt 1):167–172. doi: 10.1042/bj3260167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cai J., Sun W. M., Lu S. C. Hormonal and cell density regulation of hepatic gamma-glutamylcysteine synthetase gene expression. Mol Pharmacol. 1995 Aug;48(2):212–218. [PubMed] [Google Scholar]
  4. Choi J., Liu R. M., Kundu R. K., Sangiorgi F., Wu W., Maxson R., Forman H. J. Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J Biol Chem. 2000 Feb 4;275(5):3693–3698. doi: 10.1074/jbc.275.5.3693. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Galloway D. C., Blake D. G., Shepherd A. G., McLellan L. I. Regulation of human gamma-glutamylcysteine synthetase: co-ordinate induction of the catalytic and regulatory subunits in HepG2 cells. Biochem J. 1997 Nov 15;328(Pt 1):99–104. doi: 10.1042/bj3280099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gao B., Kunos G. Cell type-specific transcriptional activation and suppression of the alpha1B adrenergic receptor gene middle promoter by nuclear factor 1. J Biol Chem. 1998 Nov 27;273(48):31784–31787. doi: 10.1074/jbc.273.48.31784. [DOI] [PubMed] [Google Scholar]
  8. Hromas R., Davis B., Rauscher F. J., 3rd, Klemsz M., Tenen D., Hoffman S., Xu D., Morris J. F. Hematopoietic transcriptional regulation by the myeloid zinc finger gene, MZF-1. Curr Top Microbiol Immunol. 1996;211:159–164. doi: 10.1007/978-3-642-85232-9_16. [DOI] [PubMed] [Google Scholar]
  9. Huang C. S., Anderson M. E., Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 25;268(27):20578–20583. [PubMed] [Google Scholar]
  10. Huang C. S., Chang L. S., Anderson M. E., Meister A. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 15;268(26):19675–19680. [PubMed] [Google Scholar]
  11. Huang Z. Z., Li H., Cai J., Kuhlenkamp J., Kaplowitz N., Lu S. C. Changes in glutathione homeostasis during liver regeneration in the rat. Hepatology. 1998 Jan;27(1):147–153. doi: 10.1002/hep.510270123. [DOI] [PubMed] [Google Scholar]
  12. Iwanaga M., Mori K., Iida T., Urata Y., Matsuo T., Yasunaga A., Shibata S., Kondo T. Nuclear factor kappa B dependent induction of gamma glutamylcysteine synthetase by ionizing radiation in T98G human glioblastoma cells. Free Radic Biol Med. 1998 May;24(7-8):1256–1268. doi: 10.1016/s0891-5849(97)00443-7. [DOI] [PubMed] [Google Scholar]
  13. Lu S. C., Ge J. L., Kuhlenkamp J., Kaplowitz N. Insulin and glucocorticoid dependence of hepatic gamma-glutamylcysteine synthetase and glutathione synthesis in the rat. Studies in cultured hepatocytes and in vivo. J Clin Invest. 1992 Aug;90(2):524–532. doi: 10.1172/JCI115890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lu S. C., Ge J. L. Loss of suppression of GSH synthesis at low cell density in primary cultures of rat hepatocytes. Am J Physiol. 1992 Dec;263(6 Pt 1):C1181–C1189. doi: 10.1152/ajpcell.1992.263.6.C1181. [DOI] [PubMed] [Google Scholar]
  15. Lu S. C., Huang Z. Z., Yang H., Tsukamoto H. Effect of thioacetamide on the hepatic expression of gamma-glutamylcysteine synthetase subunits in the Rat. Toxicol Appl Pharmacol. 1999 Sep 15;159(3):161–168. doi: 10.1006/taap.1999.8729. [DOI] [PubMed] [Google Scholar]
  16. Lu S. C., Huang Z. Z., Yang J. M., Tsukamoto H. Effect of ethanol and high-fat feeding on hepatic gamma-glutamylcysteine synthetase subunit expression in the rat. Hepatology. 1999 Jul;30(1):209–214. doi: 10.1002/hep.510300134. [DOI] [PubMed] [Google Scholar]
  17. Lu S. C. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J. 1999 Jul;13(10):1169–1183. [PubMed] [Google Scholar]
  18. Moinova H. R., Mulcahy R. T. An electrophile responsive element (EpRE) regulates beta-naphthoflavone induction of the human gamma-glutamylcysteine synthetase regulatory subunit gene. Constitutive expression is mediated by an adjacent AP-1 site. J Biol Chem. 1998 Jun 12;273(24):14683–14689. doi: 10.1074/jbc.273.24.14683. [DOI] [PubMed] [Google Scholar]
  19. Morales A., Miranda M., Sanchez-Reyes A., Colell A., Biete A., Fernández-Checa J. C. Transcriptional regulation of the heavy subunit chain of gamma-glutamylcysteine synthetase by ionizing radiation. FEBS Lett. 1998 May 1;427(1):15–20. doi: 10.1016/s0014-5793(98)00381-0. [DOI] [PubMed] [Google Scholar]
  20. Mulcahy R. T., Wartman M. A., Bailey H. H., Gipp J. J. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem. 1997 Mar 14;272(11):7445–7454. doi: 10.1074/jbc.272.11.7445. [DOI] [PubMed] [Google Scholar]
  21. Poot M., Teubert H., Rabinovitch P. S., Kavanagh T. J. De novo synthesis of glutathione is required for both entry into and progression through the cell cycle. J Cell Physiol. 1995 Jun;163(3):555–560. doi: 10.1002/jcp.1041630316. [DOI] [PubMed] [Google Scholar]
  22. Rahman I., Smith C. A., Antonicelli F., MacNee W. Characterisation of gamma-glutamylcysteine synthetase-heavy subunit promoter: a critical role for AP-1. FEBS Lett. 1998 May 1;427(1):129–133. doi: 10.1016/s0014-5793(98)00410-4. [DOI] [PubMed] [Google Scholar]
  23. Richman P. G., Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975 Feb 25;250(4):1422–1426. [PubMed] [Google Scholar]
  24. Román J., Colell A., Blasco C., Caballeria J., Parés A., Rodés J., Fernández-Checa J. C. Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-kappaB. Hepatology. 1999 Dec;30(6):1473–1480. doi: 10.1002/hep.510300623. [DOI] [PubMed] [Google Scholar]
  25. Seelig G. F., Simondsen R. P., Meister A. Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem. 1984 Aug 10;259(15):9345–9347. [PubMed] [Google Scholar]
  26. Sekhar K. R., Meredith M. J., Kerr L. D., Soltaninassab S. R., Spitz D. R., Xu Z. Q., Freeman M. L. Expression of glutathione and gamma-glutamylcysteine synthetase mRNA is Jun dependent. Biochem Biophys Res Commun. 1997 May 29;234(3):588–593. doi: 10.1006/bbrc.1997.6697. [DOI] [PubMed] [Google Scholar]
  27. Suthanthiran M., Anderson M. E., Sharma V. K., Meister A. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A. 1990 May;87(9):3343–3347. doi: 10.1073/pnas.87.9.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yan N., Meister A. Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1990 Jan 25;265(3):1588–1593. [PubMed] [Google Scholar]
  29. Zeng Z., Huang Z. Z., Chen C., Yang H., Mao Z., Lu S. C. Cloning and functional characterization of the 5'-flanking region of human methionine adenosyltransferase 1A gene. Biochem J. 2000 Mar 1;346(Pt 2):475–482. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES