Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):545–549. doi: 10.1042/0264-6021:3570545

Functional and conformational properties of the exclusive C-domain from the Arabidopsis copper chaperone (CCH).

H Mira 1, M Vilar 1, E Pérez-Payá 1, L Peñarrubia 1
PMCID: PMC1221983  PMID: 11439106

Abstract

The Arabidopsis thaliana copper chaperone (CCH) is a small copper binding protein involved in copper trafficking. When compared to homologues from other eukaryotes, CCH has two different domains; the conserved N-domain and the plant-exclusive C-domain, a C-terminal extension with an unusual amino-acid composition. In order to characterize this extra C-domain, the CCH protein, the N-domain and the C-domain were all expressed separately in heterologous systems. While the N-domain retained the copper chaperone and antioxidant properties described for the yeast Atx1 and human HAH1 counterparts, the C-domain displayed particular structural properties that would be necessary to optimize copper homoeostasis in plant cells where it could be responsible for the metallochaperone plant-exclusive intercellular transport. The whole CCH protein and the C-domain, but not the N-domain, displayed altered SDS/PAGE mobilities. CD spectroscopy showed that the N-domain fold is representative of an alpha/beta protein, while the C-domain adopts an extended conformation.

Full Text

The Full Text of this article is available as a PDF (180.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron M., Norman D. G., Campbell I. D. Protein modules. Trends Biochem Sci. 1991 Jan;16(1):13–17. doi: 10.1016/0968-0004(91)90009-k. [DOI] [PubMed] [Google Scholar]
  2. Blondelle S. E., Ostresh J. M., Houghten R. A., Pérez-Payá E. Induced conformational states of amphipathic peptides in aqueous/lipid environments. Biophys J. 1995 Jan;68(1):351–359. doi: 10.1016/S0006-3495(95)80194-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Culotta V. C., Klomp L. W., Strain J., Casareno R. L., Krems B., Gitlin J. D. The copper chaperone for superoxide dismutase. J Biol Chem. 1997 Sep 19;272(38):23469–23472. doi: 10.1074/jbc.272.38.23469. [DOI] [PubMed] [Google Scholar]
  4. Glerum D. M., Shtanko A., Tzagoloff A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem. 1996 Jun 14;271(24):14504–14509. doi: 10.1074/jbc.271.24.14504. [DOI] [PubMed] [Google Scholar]
  5. Hamza I., Schaefer M., Klomp L. W., Gitlin J. D. Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13363–13368. doi: 10.1073/pnas.96.23.13363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harrison M. D., Jones C. E., Dameron C. T. Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem. 1999 Apr;4(2):145–153. doi: 10.1007/s007750050297. [DOI] [PubMed] [Google Scholar]
  7. Harrison M. D., Jones C. E., Solioz M., Dameron C. T. Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci. 2000 Jan;25(1):29–32. doi: 10.1016/s0968-0004(99)01492-9. [DOI] [PubMed] [Google Scholar]
  8. Himelblau E., Mira H., Lin S. J., Culotta V. C., Peñarrubia L., Amasino R. M. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol. 1998 Aug;117(4):1227–1234. doi: 10.1104/pp.117.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirayama T., Kieber J. J., Hirayama N., Kogan M., Guzman P., Nourizadeh S., Alonso J. M., Dailey W. P., Dancis A., Ecker J. R. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell. 1999 Apr 30;97(3):383–393. doi: 10.1016/s0092-8674(00)80747-3. [DOI] [PubMed] [Google Scholar]
  10. Hung I. H., Casareno R. L., Labesse G., Mathews F. S., Gitlin J. D. HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem. 1998 Jan 16;273(3):1749–1754. doi: 10.1074/jbc.273.3.1749. [DOI] [PubMed] [Google Scholar]
  11. Jones D. H., Ball E. H., Sharpe S., Barber K. R., Grant C. W. Expression and membrane assembly of a transmembrane region from Neu. Biochemistry. 2000 Feb 22;39(7):1870–1878. doi: 10.1021/bi992495e. [DOI] [PubMed] [Google Scholar]
  12. Kaufmann E., Geisler N., Weber K. SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins. FEBS Lett. 1984 May 7;170(1):81–84. doi: 10.1016/0014-5793(84)81373-3. [DOI] [PubMed] [Google Scholar]
  13. Koepf E. K., Petrassi H. M., Sudol M., Kelly J. W. WW: An isolated three-stranded antiparallel beta-sheet domain that unfolds and refolds reversibly; evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state. Protein Sci. 1999 Apr;8(4):841–853. doi: 10.1110/ps.8.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin S. J., Culotta V. C. The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3784–3788. doi: 10.1073/pnas.92.9.3784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lin S. J., Pufahl R. A., Dancis A., O'Halloran T. V., Culotta V. C. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem. 1997 Apr 4;272(14):9215–9220. [PubMed] [Google Scholar]
  16. Mira H., Martínez-García F., Peñarrubia L. Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J. 2001 Mar;25(5):521–528. doi: 10.1046/j.1365-313x.2001.00985.x. [DOI] [PubMed] [Google Scholar]
  17. Portnoy M. E., Rosenzweig A. C., Rae T., Huffman D. L., O'Halloran T. V., Culotta V. C. Structure-function analyses of the ATX1 metallochaperone. J Biol Chem. 1999 May 21;274(21):15041–15045. doi: 10.1074/jbc.274.21.15041. [DOI] [PubMed] [Google Scholar]
  18. Pufahl R. A., Singer C. P., Peariso K. L., Lin S. J., Schmidt P. J., Fahrni C. J., Culotta V. C., Penner-Hahn J. E., O'Halloran T. V. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science. 1997 Oct 31;278(5339):853–856. doi: 10.1126/science.278.5339.853. [DOI] [PubMed] [Google Scholar]
  19. Rabanal F., Ludevid M. D., Pons M., Giralt E. CD of proline-rich polypeptides: application to the study of the repetitive domain of maize glutelin-2. Biopolymers. 1993 Jul;33(7):1019–1028. doi: 10.1002/bip.360330704. [DOI] [PubMed] [Google Scholar]
  20. Rodríguez F. I., Esch J. J., Hall A. E., Binder B. M., Schaller G. E., Bleecker A. B. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science. 1999 Feb 12;283(5404):996–998. doi: 10.1126/science.283.5404.996. [DOI] [PubMed] [Google Scholar]
  21. Rosenzweig A. C., Huffman D. L., Hou M. Y., Wernimont A. K., Pufahl R. A., O'Halloran T. V. Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution. Structure. 1999 Jun 15;7(6):605–617. doi: 10.1016/s0969-2126(99)80082-3. [DOI] [PubMed] [Google Scholar]
  22. Sieber V., Moe G. R. Interactions contributing to the formation of a beta-hairpin-like structure in a small peptide. Biochemistry. 1996 Jan 9;35(1):181–188. doi: 10.1021/bi950681o. [DOI] [PubMed] [Google Scholar]
  23. Thompson GA, Schulz A. Macromolecular trafficking in the phloem. Trends Plant Sci. 1999 Sep;4(9):354–360. doi: 10.1016/s1360-1385(99)01463-6. [DOI] [PubMed] [Google Scholar]
  24. Yuan D. S., Dancis A., Klausner R. D. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem. 1997 Oct 10;272(41):25787–25793. doi: 10.1074/jbc.272.41.25787. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES