Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):575–580. doi: 10.1042/0264-6021:3570575

Inhibition of distant caspase homologues by natural caspase inhibitors.

S J Snipas 1, H R Stennicke 1, S Riedl 1, J Potempa 1, J Travis 1, A J Barrett 1, G S Salvesen 1
PMCID: PMC1221988  PMID: 11439111

Abstract

Caspases play an important role in the ability of animal cells to kill themselves by apoptosis. Caspase activity is regulated in vivo by members of three distinct protease inhibitor families, two of which, baculovirus p35 and members of the inhibitor of apoptosis (IAP) family, are thought to be caspase specific. However, caspases are members of the clan of cysteine proteases designated CD, which also includes animal and plant legumains, and the bacterial proteases clostripain, gingipain-R and gingipain-K. Since these proteases have been proposed to have a common mechanism and evolutionary origin, we hypothesized that the caspase inhibitors may also regulate these other proteases. We tested this hypothesis by examining the effect of the natural caspase inhibitors on other members of protease clan CD. The IAP family proteins were found to have only a slight inhibitory effect on gingipain-R. The cowpox viral cytokine-response modifier A (CrmA) serpin had no effect on any of the proteases tested but a single point mutation of CrmA (Asp-->Lys) resulted in strong inhibition of gingipain-K. More substantial, with respect to the hypothesis, was the strong inhibition of gingipain-K by wild-type p35. The site in p35, required for inhibition of gingipain-K, was mapped to Lys94, seven residues C-terminal to the caspase inhibitory site. Our data indicate that the virally encoded caspase inhibitors have adopted a mechanism that allows them to regulate disparate members of clan CD proteases.

Full Text

The Full Text of this article is available as a PDF (180.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Fernandez M., Barrett A. J., Gerhartz B., Dando P. M., Ni J., Abrahamson M. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem. 1999 Jul 2;274(27):19195–19203. doi: 10.1074/jbc.274.27.19195. [DOI] [PubMed] [Google Scholar]
  2. Bertin J., Mendrysa S. M., LaCount D. J., Gaur S., Krebs J. F., Armstrong R. C., Tomaselli K. J., Friesen P. D. Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J Virol. 1996 Sep;70(9):6251–6259. doi: 10.1128/jvi.70.9.6251-6259.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bode W., Huber R. Structural basis of the endoproteinase-protein inhibitor interaction. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):241–252. doi: 10.1016/s0167-4838(99)00276-9. [DOI] [PubMed] [Google Scholar]
  4. Bump N. J., Hackett M., Hugunin M., Seshagiri S., Brady K., Chen P., Ferenz C., Franklin S., Ghayur T., Li P. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science. 1995 Sep 29;269(5232):1885–1888. doi: 10.1126/science.7569933. [DOI] [PubMed] [Google Scholar]
  5. Chen J. M., Dando P. M., Rawlings N. D., Brown M. A., Young N. E., Stevens R. A., Hewitt E., Watts C., Barrett A. J. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997 Mar 21;272(12):8090–8098. doi: 10.1074/jbc.272.12.8090. [DOI] [PubMed] [Google Scholar]
  6. Chen J. M., Rawlings N. D., Stevens R. A., Barrett A. J. Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett. 1998 Dec 28;441(3):361–365. doi: 10.1016/s0014-5793(98)01574-9. [DOI] [PubMed] [Google Scholar]
  7. Chen Z., Potempa J., Polanowski A., Wikstrom M., Travis J. Purification and characterization of a 50-kDa cysteine proteinase (gingipain) from Porphyromonas gingivalis. J Biol Chem. 1992 Sep 15;267(26):18896–18901. [PubMed] [Google Scholar]
  8. Dando P. M., Fortunato M., Smith L., Knight C. G., McKendrick J. E., Barrett A. J. Pig kidney legumain: an asparaginyl endopeptidase with restricted specificity. Biochem J. 1999 May 1;339(Pt 3):743–749. [PMC free article] [PubMed] [Google Scholar]
  9. Deveraux Q. L., Reed J. C. IAP family proteins--suppressors of apoptosis. Genes Dev. 1999 Feb 1;13(3):239–252. doi: 10.1101/gad.13.3.239. [DOI] [PubMed] [Google Scholar]
  10. Deveraux Q. L., Takahashi R., Salvesen G. S., Reed J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997 Jul 17;388(6639):300–304. doi: 10.1038/40901. [DOI] [PubMed] [Google Scholar]
  11. Eichinger A., Beisel H. G., Jacob U., Huber R., Medrano F. J., Banbula A., Potempa J., Travis J., Bode W. Crystal structure of gingipain R: an Arg-specific bacterial cysteine proteinase with a caspase-like fold. EMBO J. 1999 Oct 15;18(20):5453–5462. doi: 10.1093/emboj/18.20.5453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fisher A. J., Cruz W. d., Zoog S. J., Schneider C. L., Friesen P. D. Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition. EMBO J. 1999 Apr 15;18(8):2031–2039. doi: 10.1093/emboj/18.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garcia-Calvo M., Peterson E. P., Leiting B., Ruel R., Nicholson D. W., Thornberry N. A. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem. 1998 Dec 4;273(49):32608–32613. doi: 10.1074/jbc.273.49.32608. [DOI] [PubMed] [Google Scholar]
  14. Huntington J. A., Read R. J., Carrell R. W. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000 Oct 19;407(6806):923–926. doi: 10.1038/35038119. [DOI] [PubMed] [Google Scholar]
  15. Komiyama T., Quan L. T., Salvesen G. S. Inhibition of cysteine and serine proteinases by the cowpox virus serpin CRMA. Adv Exp Med Biol. 1996;389:173–176. doi: 10.1007/978-1-4613-0335-0_21. [DOI] [PubMed] [Google Scholar]
  16. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  17. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  18. Owen M. C., Brennan S. O., Lewis J. H., Carrell R. W. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med. 1983 Sep 22;309(12):694–698. doi: 10.1056/NEJM198309223091203. [DOI] [PubMed] [Google Scholar]
  19. Patston P. A., Gettins P., Beechem J., Schapira M. Mechanism of serpin action: evidence that C1 inhibitor functions as a suicide substrate. Biochemistry. 1991 Sep 10;30(36):8876–8882. doi: 10.1021/bi00100a022. [DOI] [PubMed] [Google Scholar]
  20. Pavloff N., Pemberton P. A., Potempa J., Chen W. C., Pike R. N., Prochazka V., Kiefer M. C., Travis J., Barr P. J. Molecular cloning and characterization of Porphyromonas gingivalis lysine-specific gingipain. A new member of an emerging family of pathogenic bacterial cysteine proteinases. J Biol Chem. 1997 Jan 17;272(3):1595–1600. doi: 10.1074/jbc.272.3.1595. [DOI] [PubMed] [Google Scholar]
  21. Pickup D. J., Ink B. S., Hu W., Ray C. A., Joklik W. K. Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7698–7702. doi: 10.1073/pnas.83.20.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pike R., McGraw W., Potempa J., Travis J. Lysine- and arginine-specific proteinases from Porphyromonas gingivalis. Isolation, characterization, and evidence for the existence of complexes with hemagglutinins. J Biol Chem. 1994 Jan 7;269(1):406–411. [PubMed] [Google Scholar]
  23. Potempa J., Pike R., Travis J. Titration and mapping of the active site of cysteine proteinases from Porphyromonas gingivalis (gingipains) using peptidyl chloromethanes. Biol Chem. 1997 Mar-Apr;378(3-4):223–230. doi: 10.1515/bchm.1997.378.3-4.223. [DOI] [PubMed] [Google Scholar]
  24. Quan L. T., Caputo A., Bleackley R. C., Pickup D. J., Salvesen G. S. Granzyme B is inhibited by the cowpox virus serpin cytokine response modifier A. J Biol Chem. 1995 May 5;270(18):10377–10379. doi: 10.1074/jbc.270.18.10377. [DOI] [PubMed] [Google Scholar]
  25. Renatus M., Zhou Q., Stennicke H. R., Snipas S. J., Turk D., Bankston L. A., Liddington R. C., Salvesen G. S. Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Structure. 2000 Jul 15;8(7):789–797. doi: 10.1016/s0969-2126(00)00165-9. [DOI] [PubMed] [Google Scholar]
  26. Stennicke H. R., Renatus M., Meldal M., Salvesen G. S. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J. 2000 Sep 1;350(Pt 2):563–568. [PMC free article] [PubMed] [Google Scholar]
  27. Stennicke H. R., Salvesen G. S. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem. 1997 Oct 10;272(41):25719–25723. doi: 10.1074/jbc.272.41.25719. [DOI] [PubMed] [Google Scholar]
  28. Stennicke H. R., Salvesen G. S. Caspases: preparation and characterization. Methods. 1999 Apr;17(4):313–319. doi: 10.1006/meth.1999.0745. [DOI] [PubMed] [Google Scholar]
  29. Stennicke H. R., Salvesen G. S. Catalytic properties of the caspases. Cell Death Differ. 1999 Nov;6(11):1054–1059. doi: 10.1038/sj.cdd.4400599. [DOI] [PubMed] [Google Scholar]
  30. Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992 Apr 30;356(6372):768–774. doi: 10.1038/356768a0. [DOI] [PubMed] [Google Scholar]
  31. Turk B., Turk D., Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):98–111. doi: 10.1016/s0167-4838(99)00263-0. [DOI] [PubMed] [Google Scholar]
  32. Uhlmann F., Wernic D., Poupart M. A., Koonin E. V., Nasmyth K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 2000 Oct 27;103(3):375–386. doi: 10.1016/s0092-8674(00)00130-6. [DOI] [PubMed] [Google Scholar]
  33. Xu G., Cirilli M., Huang Y., Rich R. L., Myszka D. G., Wu H. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature. 2001 Mar 22;410(6827):494–497. doi: 10.1038/35068604. [DOI] [PubMed] [Google Scholar]
  34. Zhou Q., Krebs J. F., Snipas S. J., Price A., Alnemri E. S., Tomaselli K. J., Salvesen G. S. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry. 1998 Jul 28;37(30):10757–10765. doi: 10.1021/bi980893w. [DOI] [PubMed] [Google Scholar]
  35. Zhou Q., Snipas S., Orth K., Muzio M., Dixit V. M., Salvesen G. S. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem. 1997 Mar 21;272(12):7797–7800. doi: 10.1074/jbc.272.12.7797. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES