Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):581–586. doi: 10.1042/0264-6021:3570581

Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence.

K Denger 1, J Ruff 1, U Rein 1, A M Cook 1
PMCID: PMC1221989  PMID: 11439112

Abstract

The strictly anaerobic bacterium Desulfonispora thiosulfatigenes ferments taurine via sulphoacetaldehyde, which is hydrolysed to acetate and sulphite by sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12). The lyase was expressed at high levels and a two-step, 4.5-fold purification yielded an apparently homogeneous soluble protein, which was presumably a homodimer in its native form; the molecular mass of the subunit was about 61 kDa (by SDS/PAGE). The mass was determined to be 63.8 kDa by matrix-assisted laser-desorption ionization-time-of-flight (MALDI-TOF) MS. The purified enzyme converted 1 mol of sulphoacetaldehyde to 1 mol each of sulphite and acetate, but no requirement for thiamine pyrophosphate (TPP) was detected. The N-terminal and two internal amino acid sequences were determined, which allowed us to generate PCR primers. The gene was amplified and sequenced. The DNA sequence had no significant homologue in the databases searched, whereas the derived amino acid sequence indicated an oxo-acid lyase, revealed a TPP-binding site and gave a derived molecular mass of 63.8 kDa.

Full Text

The Full Text of this article is available as a PDF (187.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Cook A. M., Laue H., Junker F. Microbial desulfonation. FEMS Microbiol Rev. 1998 Dec;22(5):399–419. doi: 10.1111/j.1574-6976.1998.tb00378.x. [DOI] [PubMed] [Google Scholar]
  4. Cunningham C., Tipton K. F., Dixon H. B. Conversion of taurine into N-chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. Biochem J. 1998 Mar 1;330(Pt 2):939–945. doi: 10.1042/bj3300939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Denger K., Laue H., Cook A. M. Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology. 1997 Jun;143(Pt 6):1919–1924. doi: 10.1099/00221287-143-6-1919. [DOI] [PubMed] [Google Scholar]
  6. Denger K., Laue H., Cook A. M. Thiosulfate as a metabolic product: the bacterial fermentation of taurine. Arch Microbiol. 1997 Oct;168(4):297–301. doi: 10.1007/s002030050502. [DOI] [PubMed] [Google Scholar]
  7. Denger K., Stackebrandt E., Cook A. M. Desulfonispora thiosulfatigenes gen. nov., sp. nov., a taurine-fermenting, thiosulfate-producing anaerobic bacterium. Int J Syst Bacteriol. 1999 Oct;49(Pt 4):1599–1603. doi: 10.1099/00207713-49-4-1599. [DOI] [PubMed] [Google Scholar]
  8. Huxtable R. J. Physiological actions of taurine. Physiol Rev. 1992 Jan;72(1):101–163. doi: 10.1152/physrev.1992.72.1.101. [DOI] [PubMed] [Google Scholar]
  9. Kondo H., Anada H., Osawa K., Ishimoto M. Formation of sulfoacetaldehyde from taurine in bacterial extracts. J Biochem. 1971 Mar;69(3):621–623. [PubMed] [Google Scholar]
  10. Kondo H., Ishimoto M. Purification and properties of sulfoacetaldehyde sulfo-lyase, a thiamine pyrophosphate-dependent enzyme forming sulfite and acetate. J Biochem. 1975 Aug;78(2):317–325. doi: 10.1093/oxfordjournals.jbchem.a130910. [DOI] [PubMed] [Google Scholar]
  11. Kondo H., Ishimoto M. Requirement for thiamine pyrophosphate and magnesium for sulfoacetaldehyde sulfo-lyase activity. J Biochem. 1974 Jul;76(1):229–231. doi: 10.1093/oxfordjournals.jbchem.a130553. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Laue H., Cook A. M. Biochemical and molecular characterization of taurine:pyruvate aminotransferase from the anaerobe Bilophila wadsworthia. Eur J Biochem. 2000 Dec;267(23):6841–6848. doi: 10.1046/j.1432-1033.2000.01782.x. [DOI] [PubMed] [Google Scholar]
  14. Laue H., Cook A. M. Purification, properties and primary structure of alanine dehydrogenase involved in taurine metabolism in the anaerobe Bilophila wadsworthia. Arch Microbiol. 2000 Sep;174(3):162–167. doi: 10.1007/s002030000190. [DOI] [PubMed] [Google Scholar]
  15. Laue H., Denger K., Cook A. M. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol. 1997 May;63(5):2016–2021. doi: 10.1128/aem.63.5.2016-2021.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laue H., Friedrich M., Ruff J., Cook A. M. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol. 2001 Mar;183(5):1727–1733. doi: 10.1128/JB.183.5.1727-1733.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindqvist Y., Schneider G., Ermler U., Sundström M. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution. EMBO J. 1992 Jul;11(7):2373–2379. doi: 10.1002/j.1460-2075.1992.tb05301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Locher H. H., Leisinger T., Cook A. M. 4-Sulphobenzoate 3,4-dioxygenase. Purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. Biochem J. 1991 Mar 15;274(Pt 3):833–842. doi: 10.1042/bj2740833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mikosch C. A., Denger K., Schäfer E. M., Cook A. M. Anaerobic oxidations of cysteate: degradation via L-cysteate:2-oxoglutarate aminotransferase in Paracoccus pantotrophus. Microbiology. 1999 May;145(Pt 5):1153–1160. doi: 10.1099/13500872-145-5-1153. [DOI] [PubMed] [Google Scholar]
  20. Schleheck D., Dong W., Denger K., Heinzle E., Cook A. M. An alpha-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenylcarboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates. Appl Environ Microbiol. 2000 May;66(5):1911–1916. doi: 10.1128/aem.66.5.1911-1916.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schläfli H. R., Weiss M. A., Leisinger T., Cook A. M. Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol. 1994 Nov;176(21):6644–6652. doi: 10.1128/jb.176.21.6644-6652.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shimamoto G., Berk R. S. Taurine catabolism. II. biochemical and genetic evidence for sulfoacetaldehyde sulfo-lyase involvement. Biochim Biophys Acta. 1980 Sep 17;632(1):121–130. doi: 10.1016/0304-4165(80)90255-x. [DOI] [PubMed] [Google Scholar]
  23. Visscher P. T., Gritzer R. F., Leadbetter E. R. Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl Environ Microbiol. 1999 Aug;65(8):3272–3278. doi: 10.1128/aem.65.8.3272-3278.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weinstein C. L., Griffith O. W. beta-Sulfopyruvate: chemical and enzymatic syntheses and enzymatic assay. Anal Biochem. 1986 Jul;156(1):154–160. doi: 10.1016/0003-2697(86)90167-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES