Abstract
STIM1 (where STIM is stromal interaction molecule) is a candidate tumour suppressor gene that maps to human chromosome 11p15.5, a region implicated in a variety of cancers, particularly embryonal rhabdomyosarcoma. STIM1 codes for a transmembrane phosphoprotein whose structure is unrelated to that of any other known proteins. The precise pathway by which STIM1 regulates cell growth is not known. In the present study we screened gene databases for STIM1-related sequences, and have identified and characterized cDNA sequences representing a single gene in humans and other vertebrates, which we have called STIM2. We identified a single STIM homologue in Drosophila melanogaster (D-Stim) and Caenorhabditis elegans, but no homologues in yeast. STIM1, STIM2 and D-Stim have a conserved genomic organization, indicating that the vertebrate family of two STIM genes most probably arose from a single ancestral gene. The three STIM proteins each contain a single SAM (sterile alpha-motif) domain and an unpaired EF hand within the highly conserved extracellular region, and have coiled-coil domains that are conserved in structure and position within the cytoplasmic region. However, the STIM proteins diverge significantly within the C-terminal half of the cytoplasmic domain. Differential levels of phosphorylation appear to account for two molecular mass isoforms (105 and 115 kDa) of STIM2. We demonstrate by mutation analysis and protein sequencing that human STIM2 initiates translation exclusively from a non-AUG start site in vivo. STIM2 is expressed ubiquitously in cell lines, and co-precipitates with STIM1 from cell lysates. This association into oligomers in vivo indicates a possible functional interaction between STIM1 and STIM2. The structural similarities between STIM1, STIM2 and D-STIM suggest conserved biological functions.
Full Text
The Full Text of this article is available as a PDF (309.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Rapp B. A., Wheeler D. L. GenBank. Nucleic Acids Res. 2000 Jan 1;28(1):15–18. doi: 10.1093/nar/28.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray N. K., Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol. 1998;14:399–458. doi: 10.1146/annurev.cellbio.14.1.399. [DOI] [PubMed] [Google Scholar]
- Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996 Jan;21(1):14–17. [PubMed] [Google Scholar]
- Kikuno R., Nagase T., Suyama M., Waki M., Hirosawa M., Ohara O. HUGE: a database for human large proteins identified in the Kazusa cDNA sequencing project. Nucleic Acids Res. 2000 Jan 1;28(1):331–332. doi: 10.1093/nar/28.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome. 1996 Aug;7(8):563–574. doi: 10.1007/s003359900171. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H. EF-hands reach out. Nat Struct Biol. 1996 Jan;3(1):12–15. doi: 10.1038/nsb0196-12. [DOI] [PubMed] [Google Scholar]
- Lupas A., Van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
- Manji S. S., Parker N. J., Williams R. T., van Stekelenburg L., Pearson R. B., Dziadek M., Smith P. J. STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta. 2000 Aug 31;1481(1):147–155. doi: 10.1016/s0167-4838(00)00105-9. [DOI] [PubMed] [Google Scholar]
- Nagase T., Kikuno R., Ishikawa K., Hirosawa M., Ohara O. Prediction of the coding sequences of unidentified human genes. XVII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 2000 Apr 28;7(2):143–150. doi: 10.1093/dnares/7.2.143. [DOI] [PubMed] [Google Scholar]
- Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
- Oritani K., Kincade P. W. Identification of stromal cell products that interact with pre-B cells. J Cell Biol. 1996 Aug;134(3):771–782. doi: 10.1083/jcb.134.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overall M. L., Parker N. J., Scarcella D. L., Smith P. J., Dziadek M. Murine Stim1 maps to distal chromosome 7 and is not imprinted. Mamm Genome. 1998 Aug;9(8):657–659. doi: 10.1007/s003359900839. [DOI] [PubMed] [Google Scholar]
- Parker N. J., Begley C. G., Smith P. J., Fox R. M. Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics. 1996 Oct 15;37(2):253–256. doi: 10.1006/geno.1996.0553. [DOI] [PubMed] [Google Scholar]
- Pershouse M. A., El-Naggar A. K., Hurr K., Lin H., Yung W. K., Steck P. A. Deletion mapping of chromosome 4 in head and neck squamous cell carcinoma. Oncogene. 1997 Jan 23;14(3):369–373. doi: 10.1038/sj.onc.1200836. [DOI] [PubMed] [Google Scholar]
- Petersen S., Aninat-Meyer M., Schlüns K., Gellert K., Dietel M., Petersen I. Chromosomal alterations in the clonal evolution to the metastatic stage of squamous cell carcinomas of the lung. Br J Cancer. 2000 Jan;82(1):65–73. doi: 10.1054/bjoc.1999.0878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ponting C. P. SAM: a novel motif in yeast sterile and Drosophila polyhomeotic proteins. Protein Sci. 1995 Sep;4(9):1928–1930. doi: 10.1002/pro.5560040927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richard F., Pacyna-Gengelbach M., Schlüns K., Fleige B., Winzer K. J., Szymas J., Dietel M., Petersen I., Schwendel A. Patterns of chromosomal imbalances in invasive breast cancer. Int J Cancer. 2000 May 20;89(3):305–310. [PubMed] [Google Scholar]
- Roest Crollius H., Jaillon O., Bernot A., Dasilva C., Bouneau L., Fischer C., Fizames C., Wincker P., Brottier P., Quétier F. Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence. Nat Genet. 2000 Jun;25(2):235–238. doi: 10.1038/76118. [DOI] [PubMed] [Google Scholar]
- Rowe L. B., Nadeau J. H., Turner R., Frankel W. N., Letts V. A., Eppig J. T., Ko M. S., Thurston S. J., Birkenmeier E. H. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm Genome. 1994 May;5(5):253–274. doi: 10.1007/BF00389540. [DOI] [PubMed] [Google Scholar]
- Sabbioni S., Barbanti-Brodano G., Croce C. M., Negrini M. GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res. 1997 Oct 15;57(20):4493–4497. [PubMed] [Google Scholar]
- Sabbioni S., Veronese A., Trubia M., Taramelli R., Barbanti-Brodano G., Croce C. M., Negrini M. Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD. Cytogenet Cell Genet. 1999;86(3-4):214–218. doi: 10.1159/000015341. [DOI] [PubMed] [Google Scholar]
- Schultz J., Copley R. R., Doerks T., Ponting C. P., Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 2000 Jan 1;28(1):231–234. doi: 10.1093/nar/28.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz J., Ponting C. P., Hofmann K., Bork P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 1997 Jan;6(1):249–253. doi: 10.1002/pro.5560060128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thanos C. D., Faham S., Goodwill K. E., Cascio D., Phillips M., Bowie J. U. Monomeric structure of the human EphB2 sterile alpha motif domain. J Biol Chem. 1999 Dec 24;274(52):37301–37306. doi: 10.1074/jbc.274.52.37301. [DOI] [PubMed] [Google Scholar]
- Tsigelny I., Shindyalov I. N., Bourne P. E., Südhof T. C., Taylor P. Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations. Protein Sci. 2000 Jan;9(1):180–185. doi: 10.1110/ps.9.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tusnády G. E., Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol. 1998 Oct 23;283(2):489–506. doi: 10.1006/jmbi.1998.2107. [DOI] [PubMed] [Google Scholar]
- van der Bliek A. M., Meyerowitz E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature. 1991 May 30;351(6325):411–414. doi: 10.1038/351411a0. [DOI] [PubMed] [Google Scholar]