Abstract
Homogeneous assays, without a separation step, are essential for measuring chemical events in live cells and for drug discovery screens, and are desirable for making measurements in cell extracts or clinical samples. Here we demonstrate the principle of chemiluminescence resonance energy transfer (CRET) as a homogeneous assay system, using two proteases as models, one extracellular (alpha-thrombin) and the other intracellular (caspase-3). Chimaeras were engineered with aequorin as the chemiluminescent energy donor and green fluorescent protein (GFP) or enhanced GFP as the energy acceptors, with a protease linker (6 or 18 amino acid residues) recognition site between the donor and acceptor. Flash chemiluminescent spectra (20--60 s) showed that the spectra of chimaeras matched GFP, being similar to that of luminous jellyfish, justifying their designation as 'Rainbow' proteins. Addition of the protease shifted the emission spectrum to that of aequorin in a time- and dose-dependent manner. Separation of the proteolysed fragments showed that the ratio of green to blue light matched the extent of proteolysis. The caspase-3 Rainbow protein was able to provide information on the specificity of caspases in vitro and in vivo. It was also able to monitor caspase-3 activation in cells provoked into apoptosis by staurosporine (1 or 2 microM). CRET can also monitor GFP fluor formation. The signal-to-noise ratio of our Rainbow proteins is superior to that of fluorescence resonance energy transfer, providing a potential platform for measuring agents that interact with the reactive site between the donor and acceptor.
Full Text
The Full Text of this article is available as a PDF (344.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angers S., Salahpour A., Joly E., Hilairet S., Chelsky D., Dennis M., Bouvier M. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3684–3689. doi: 10.1073/pnas.060590697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Badminton M. N., Sala-Newby G. B., Kendall J. M., Campbell A. K. Differences in stability of recombinant apoaequorin within subcellular compartments. Biochem Biophys Res Commun. 1995 Dec 26;217(3):950–957. doi: 10.1006/bbrc.1995.2862. [DOI] [PubMed] [Google Scholar]
- Baird G. S., Zacharias D. A., Tsien R. Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11984–11989. doi: 10.1073/pnas.97.22.11984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baubet V., Le Mouellic H., Campbell A. K., Lucas-Meunier E., Fossier P., Brúlet P. Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7260–7265. doi: 10.1073/pnas.97.13.7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell A. K., Patel A. A homogeneous immunoassay for cyclic nucleotides based on chemiluminescence energy transfer. Biochem J. 1983 Oct 15;216(1):185–194. doi: 10.1042/bj2160185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell A. K., Trewavas A. J., Knight M. R. Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants. Cell Calcium. 1996 Mar;19(3):211–218. doi: 10.1016/s0143-4160(96)90022-6. [DOI] [PubMed] [Google Scholar]
- Claeson G. Synthetic peptides and peptidomimetics as substrates and inhibitors of thrombin and other proteases in the blood coagulation system. Blood Coagul Fibrinolysis. 1994 Jun;5(3):411–436. [PubMed] [Google Scholar]
- Jeffery J., Kendall J. M., Campbell A. K. Apoaequorin monitors degradation of endoplasmic reticulum (ER) proteins initiated by loss of ER Ca(2+). Biochem Biophys Res Commun. 2000 Feb 24;268(3):711–715. doi: 10.1006/bbrc.2000.2194. [DOI] [PubMed] [Google Scholar]
- Kendall J. M., Badminton M. N., Sala-Newby G. B., Campbell A. K., Rembold C. M. Recombinant apoaequorin acting as a pseudo-luciferase reports micromolar changes in the endoplasmic reticulum free Ca2+ of intact cells. Biochem J. 1996 Sep 1;318(Pt 2):383–387. doi: 10.1042/bj3180383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kothakota S., Azuma T., Reinhard C., Klippel A., Tang J., Chu K., McGarry T. J., Kirschner M. W., Koths K., Kwiatkowski D. J. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science. 1997 Oct 10;278(5336):294–298. doi: 10.1126/science.278.5336.294. [DOI] [PubMed] [Google Scholar]
- Matz M. V., Fradkov A. F., Labas Y. A., Savitsky A. P., Zaraisky A. G., Markelov M. L., Lukyanov S. A. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. 1999 Oct;17(10):969–973. doi: 10.1038/13657. [DOI] [PubMed] [Google Scholar]
- Meergans T., Hildebrandt A. K., Horak D., Haenisch C., Wendel A. The short prodomain influences caspase-3 activation in HeLa cells. Biochem J. 2000 Jul 1;349(Pt 1):135–140. doi: 10.1042/0264-6021:3490135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohmiya Y., Ohashi M., Tsuji F. I. Two excited states in aequorin bioluminescence induced by tryptophan modification. FEBS Lett. 1992 Apr 20;301(2):197–201. doi: 10.1016/0014-5793(92)81247-j. [DOI] [PubMed] [Google Scholar]
- Robert V., Pinton P., Tosello V., Rizzuto R., Pozzan T. Recombinant aequorin as tool for monitoring calcium concentration in subcellular compartments. Methods Enzymol. 2000;327:440–456. doi: 10.1016/s0076-6879(00)27295-9. [DOI] [PubMed] [Google Scholar]
- Sala-Newby G. B., Badminton M. N., Evans W. H., George C. H., Jones H. E., Kendall J. M., Ribeiro A. R., Campbell A. K. Targeted bioluminescent indicators in living cells. Methods Enzymol. 2000;305:479–498. doi: 10.1016/s0076-6879(00)05508-7. [DOI] [PubMed] [Google Scholar]
- Sala-Newby G. B., Taylor K. M., Badminton M. N., Rembold C. M., Campbell A. K. Imaging bioluminescent indicators shows Ca2+ and ATP permeability thresholds in live cells attacked by complement. Immunology. 1998 Apr;93(4):601–609. doi: 10.1046/j.1365-2567.1998.00004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sala-Newby G., Campbell A. K. Engineering firefly luciferase as an indicator of cyclic AMP-dependent protein kinase in living cells. FEBS Lett. 1992 Jul 28;307(2):241–244. doi: 10.1016/0014-5793(92)80776-d. [DOI] [PubMed] [Google Scholar]
- Salvesen G. S., Dixit V. M. Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):10964–10967. doi: 10.1073/pnas.96.20.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saunders P. A., Cooper J. A., Roodell M. M., Schroeder D. A., Borchert C. J., Isaacson A. L., Schendel M. J., Godfrey K. G., Cahill D. R., Walz A. M. Quantification of active caspase 3 in apoptotic cells. Anal Biochem. 2000 Aug 15;284(1):114–124. doi: 10.1006/abio.2000.4690. [DOI] [PubMed] [Google Scholar]
- Shimomura O., Musicki B., Kishi Y. Semi-synthetic aequorin. An improved tool for the measurement of calcium ion concentration. Biochem J. 1988 Apr 15;251(2):405–410. doi: 10.1042/bj2510405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y., Miyawaki A. Seeing the machinery of live cells. Science. 1998 Jun 19;280(5371):1954–1955. doi: 10.1126/science.280.5371.1954. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
- Ward W. W., Cormier M. J. An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem. 1979 Feb 10;254(3):781–788. [PubMed] [Google Scholar]
- Watkins N. J., Campbell A. K. Requirement of the C-terminal proline residue for stability of the Ca(2+)-activated photoprotein aequorin. Biochem J. 1993 Jul 1;293(Pt 1):181–185. doi: 10.1042/bj2930181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waud J. P., Sala-Newby G. B., Matthews S. B., Campbell A. K. Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins. Biochim Biophys Acta. 1996 Jan 4;1292(1):89–98. doi: 10.1016/0167-4838(95)00199-9. [DOI] [PubMed] [Google Scholar]
- Welihinda A. A., Tirasophon W., Kaufman R. J. The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr. 1999;7(4-6):293–300. [PMC free article] [PubMed] [Google Scholar]
- Xu X., Gerard A. L., Huang B. C., Anderson D. C., Payan D. G., Luo Y. Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res. 1998 Apr 15;26(8):2034–2035. doi: 10.1093/nar/26.8.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Y., Piston D. W., Johnson C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):151–156. doi: 10.1073/pnas.96.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]