Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 1;357(Pt 3):699–708. doi: 10.1042/0264-6021:3570699

Two splice variants of Golgi-microtubule-associated protein of 210 kDa (GMAP-210) differ in their binding to the cis-Golgi network.

F Ramos-Morales 1, C Vime 1, M Bornens 1, C Fedriani 1, R M Rios 1
PMCID: PMC1221999  PMID: 11463340

Abstract

GMAP-210 (Golgi-microtubule-associated protein of 210 kDa) is a peripheral Golgi protein that interacts with the minus end of microtubules through its C-terminus and with cis-Golgi network membranes through its N-terminus; it participates in the maintenance of the structural integrity of the Golgi apparatus [Infante, Ramos-Morales, Fedriani, Bornens and Rios (1999) J. Cell Biol. 145, 83--98]. We report here the cloning of a new isoform of GMAP-210 that lacks amino acid residues 105--196. On the basis of the analysis of the gmap-210 genomic sequence, we propose that the small isoform, GMAP-200, arises from alternative splicing of exon 4 of the primary transcript. Overexpression of GMAP-200 induces perturbations in both the Golgi apparatus and the microtubule network that are similar to those previously reported for GMAP-210 overexpression. We show that both isoforms are able to oligomerize under overexpression conditions. Analysis in vitro and in vivo, with the green fluorescent protein as a marker, reveals that the binding of the N-terminal domain of GMAP-200 to the cis-Golgi network membranes is lower than that of the N-terminal domain of GMAP-210. Implications for the regulation of interaction between the cis-Golgi network and microtubules are discussed.

Full Text

The Full Text of this article is available as a PDF (395.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan V. J., Schroer T. A. Membrane motors. Curr Opin Cell Biol. 1999 Aug;11(4):476–482. doi: 10.1016/s0955-0674(99)80068-4. [DOI] [PubMed] [Google Scholar]
  2. Bulinski J. C., McGraw T. E., Gruber D., Nguyen H. L., Sheetz M. P. Overexpression of MAP4 inhibits organelle motility and trafficking in vivo. J Cell Sci. 1997 Dec;110(Pt 24):3055–3064. doi: 10.1242/jcs.110.24.3055. [DOI] [PubMed] [Google Scholar]
  3. Burkhardt J. K., Echeverri C. J., Nilsson T., Vallee R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol. 1997 Oct 20;139(2):469–484. doi: 10.1083/jcb.139.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. Y., Schwartz R. J. Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem. 1995 Jun 30;270(26):15628–15633. doi: 10.1074/jbc.270.26.15628. [DOI] [PubMed] [Google Scholar]
  5. Ebneth A., Godemann R., Stamer K., Illenberger S., Trinczek B., Mandelkow E. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol. 1998 Nov 2;143(3):777–794. doi: 10.1083/jcb.143.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ewing B., Green P. Analysis of expressed sequence tags indicates 35,000 human genes. Nat Genet. 2000 Jun;25(2):232–234. doi: 10.1038/76115. [DOI] [PubMed] [Google Scholar]
  7. Foletta V. C. Transcription factor AP-1, and the role of Fra-2. Immunol Cell Biol. 1996 Apr;74(2):121–133. doi: 10.1038/icb.1996.17. [DOI] [PubMed] [Google Scholar]
  8. Guigó R., Knudsen S., Drake N., Smith T. Prediction of gene structure. J Mol Biol. 1992 Jul 5;226(1):141–157. doi: 10.1016/0022-2836(92)90130-c. [DOI] [PubMed] [Google Scholar]
  9. Harada A., Takei Y., Kanai Y., Tanaka Y., Nonaka S., Hirokawa N. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol. 1998 Apr 6;141(1):51–59. doi: 10.1083/jcb.141.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harley V. R., Lovell-Badge R., Goodfellow P. N. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res. 1994 Apr 25;22(8):1500–1501. doi: 10.1093/nar/22.8.1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Infante C., Ramos-Morales F., Fedriani C., Bornens M., Rios R. M. GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol. 1999 Apr 5;145(1):83–98. doi: 10.1083/jcb.145.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jasmin B. J., Cartaud J., Bornens M., Changeux J. P. Golgi apparatus in chick skeletal muscle: changes in its distribution during end plate development and after denervation. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7218–7222. doi: 10.1073/pnas.86.18.7218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnsen O., Murphy P., Prydz H., Kolsto A. B. Interaction of the CNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selection and regulation of transcription. Nucleic Acids Res. 1998 Jan 15;26(2):512–520. doi: 10.1093/nar/26.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kitazawa H., Iida J., Uchida A., Haino-Fukushima K., Itoh T. J., Hotani H., Ookata K., Murofushi H., Bulinski J. C., Kishimoto T. Ser787 in the proline-rich region of human MAP4 is a critical phosphorylation site that reduces its activity to promote tubulin polymerization. Cell Struct Funct. 2000 Feb;25(1):33–39. doi: 10.1247/csf.25.33. [DOI] [PubMed] [Google Scholar]
  15. Kondrakhin Y. V., Kel A. E., Kolchanov N. A., Romashchenko A. G., Milanesi L. Eukaryotic promoter recognition by binding sites for transcription factors. Comput Appl Biosci. 1995 Oct;11(5):477–488. doi: 10.1093/bioinformatics/11.5.477. [DOI] [PubMed] [Google Scholar]
  16. Krohne G., Stick R., Kleinschmidt J. A., Moll R., Franke W. W., Hausen P. Immunological localization of a major karyoskeletal protein in nucleoli of oocytes and somatic cells of Xenopus laevis. J Cell Biol. 1982 Sep;94(3):749–754. doi: 10.1083/jcb.94.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Linstedt A. D., Hauri H. P. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell. 1993 Jul;4(7):679–693. doi: 10.1091/mbc.4.7.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lippincott-Schwartz J. Cytoskeletal proteins and Golgi dynamics. Curr Opin Cell Biol. 1998 Feb;10(1):52–59. doi: 10.1016/s0955-0674(98)80086-0. [DOI] [PubMed] [Google Scholar]
  19. Lopez A. J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet. 1998;32:279–305. doi: 10.1146/annurev.genet.32.1.279. [DOI] [PubMed] [Google Scholar]
  20. López L. A., Sheetz M. P. A microtubule-associated protein (MAP2) kinase restores microtubule motility in embryonic brain. J Biol Chem. 1995 May 26;270(21):12511–12517. doi: 10.1074/jbc.270.21.12511. [DOI] [PubMed] [Google Scholar]
  21. Mantovani R. A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res. 1998 Mar 1;26(5):1135–1143. doi: 10.1093/nar/26.5.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Margalit Y., Yarus S., Shapira E., Gruenbaum Y., Fainsod A. Isolation and characterization of target sequences of the chicken CdxA homeobox gene. Nucleic Acids Res. 1993 Oct 25;21(21):4915–4922. doi: 10.1093/nar/21.21.4915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Molnár A., Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994 Dec;14(12):8292–8303. doi: 10.1128/mcb.14.12.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prestridge D. S. Predicting Pol II promoter sequences using transcription factor binding sites. J Mol Biol. 1995 Jun 23;249(5):923–932. doi: 10.1006/jmbi.1995.0349. [DOI] [PubMed] [Google Scholar]
  25. Quandt K., Frech K., Karas H., Wingender E., Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995 Dec 11;23(23):4878–4884. doi: 10.1093/nar/23.23.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rickard J. E., Kreis T. E. CLIPs for organelle-microtubule interactions. Trends Cell Biol. 1996 May;6(5):178–183. doi: 10.1016/0962-8924(96)10017-9. [DOI] [PubMed] [Google Scholar]
  27. Rios R. M., Tassin A. M., Celati C., Antony C., Boissier M. C., Homberg J. C., Bornens M. A peripheral protein associated with the cis-Golgi network redistributes in the intermediate compartment upon brefeldin A treatment. J Cell Biol. 1994 Jun;125(5):997–1013. doi: 10.1083/jcb.125.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sekido R., Murai K., Funahashi J., Kamachi Y., Fujisawa-Sehara A., Nabeshima Y., Kondoh H. The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box-mediated gene activation. Mol Cell Biol. 1994 Sep;14(9):5692–5700. doi: 10.1128/mcb.14.9.5692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shima D. T., Cabrera-Poch N., Pepperkok R., Warren G. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J Cell Biol. 1998 May 18;141(4):955–966. doi: 10.1083/jcb.141.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Slansky J. E., Farnham P. J. Transcriptional regulation of the dihydrofolate reductase gene. Bioessays. 1996 Jan;18(1):55–62. doi: 10.1002/bies.950180111. [DOI] [PubMed] [Google Scholar]
  31. Solovyev V. V., Salamov A. A., Lawrence C. B. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucleic Acids Res. 1994 Dec 11;22(24):5156–5163. doi: 10.1093/nar/22.24.5156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whyatt D. J., deBoer E., Grosveld F. The two zinc finger-like domains of GATA-1 have different DNA binding specificities. EMBO J. 1993 Dec 15;12(13):4993–5005. doi: 10.1002/j.1460-2075.1993.tb06193.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wilson I. A., Niman H. L., Houghten R. A., Cherenson A. R., Connolly M. L., Lerner R. A. The structure of an antigenic determinant in a protein. Cell. 1984 Jul;37(3):767–778. doi: 10.1016/0092-8674(84)90412-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES