Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 1;357(Pt 3):795–802. doi: 10.1042/0264-6021:3570795

Effect of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity.

O Cohen 1, C Kronman 1, T Chitlaru 1, A Ordentlich 1, B Velan 1, A Shafferman 1
PMCID: PMC1222009  PMID: 11463350

Abstract

Post-translational modifications were recently shown to be responsible for the short circulatory mean residence time (MRT) of recombinant human acetylcholinesterase (rHuAChE) [Kronman, Velan, Marcus, Ordentlich, Reuveny and Shafferman (1995) Biochem. J. 311, 959--967; Chitlaru, Kronman, Zeevi, Kam, Harel, Ordentlich, Velan and Shafferman (1998) Biochem. J. 336, 647--658; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613--625], which is one of the major obstacles to the fulfilment of its therapeutic potential as a bioscavenger. In the present study we demonstrate that the MRT of rHuAChE can be significantly increased by the controlled attachment of polyethylene glycol (PEG) side chains to lysine residues. Attachment of as many as four PEG molecules to monomeric rHuAChE had minimal effects, if any, on either the catalytic activity (K(m)=0.09 mM and k(cat)=3.9 x 10(5) min(-1)) or the reactivity of the modified enzyme towards active-centre inhibitors, such as edrophonium and di-isopropyl fluorophosphate, or to peripheral-site ligands, such as propidium, BW284C51 and even the bulky snake-venom toxin fasciculin-II. The increase in MRT of the PEG-modified monomeric enzyme is linearly dependent, in the tested range, on the number of attached PEG molecules, as well as on their size. It appears that even low level PEG-conjugation can overcome the deleterious effect of under-sialylation on the pharmacokinetic performance of rHuAChE. At the highest tested ratio of attached PEG-20000/rHuAChE (4:1), an MRT of over 2100 min was attained, a value unmatched by any other known form of recombinant or native serum-derived AChE reported to date.

Full Text

The Full Text of this article is available as a PDF (240.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abuchowski A., McCoy J. R., Palczuk N. C., van Es T., Davis F. F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977 Jun 10;252(11):3582–3586. [PubMed] [Google Scholar]
  2. Altamirano C. V., Lockridge O. Conserved aromatic residues of the C-terminus of human butyrylcholinesterase mediate the association of tetramers. Biochemistry. 1999 Oct 5;38(40):13414–13422. doi: 10.1021/bi991475+. [DOI] [PubMed] [Google Scholar]
  3. Aniya Y., Naito A. Oxidative stress-induced activation of microsomal glutathione S-transferase in isolated rat liver. Biochem Pharmacol. 1993 Jan 7;45(1):37–42. doi: 10.1016/0006-2952(93)90374-6. [DOI] [PubMed] [Google Scholar]
  4. Barak D., Kronman C., Ordentlich A., Ariel N., Bromberg A., Marcus D., Lazar A., Velan B., Shafferman A. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J Biol Chem. 1994 Mar 4;269(9):6296–6305. [PubMed] [Google Scholar]
  5. Boccù E., Velo G. P., Veronese F. M. Pharmacokinetic properties of polyethylene glycol derivatized superoxide dismutase. Pharmacol Res Commun. 1982 Feb;14(2):113–120. doi: 10.1016/s0031-6989(82)80092-1. [DOI] [PubMed] [Google Scholar]
  6. Chapman A. P., Antoniw P., Spitali M., West S., Stephens S., King D. J. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol. 1999 Aug;17(8):780–783. doi: 10.1038/11717. [DOI] [PubMed] [Google Scholar]
  7. Chitlaru T., Kronman C., Velan B., Shafferman A. Effect of human acetylcholinesterase subunit assembly on its circulatory residence. Biochem J. 2001 Mar 15;354(Pt 3):613–625. doi: 10.1042/0264-6021:3540613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chitlaru T., Kronman C., Zeevi M., Kam M., Harel A., Ordentlich A., Velan B., Shafferman A. Modulation of circulatory residence of recombinant acetylcholinesterase through biochemical or genetic manipulation of sialylation levels. Biochem J. 1998 Dec 15;336(Pt 3):647–658. doi: 10.1042/bj3360647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark R., Olson K., Fuh G., Marian M., Mortensen D., Teshima G., Chang S., Chu H., Mukku V., Canova-Davis E. Long-acting growth hormones produced by conjugation with polyethylene glycol. J Biol Chem. 1996 Sep 6;271(36):21969–21977. doi: 10.1074/jbc.271.36.21969. [DOI] [PubMed] [Google Scholar]
  10. Davis S., Abuchowski A., Park Y. K., Davis F. F. Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin Exp Immunol. 1981 Dec;46(3):649–652. [PMC free article] [PubMed] [Google Scholar]
  11. DeSantis G., Jones J. B. Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol. 1999 Aug;10(4):324–330. doi: 10.1016/S0958-1669(99)80059-7. [DOI] [PubMed] [Google Scholar]
  12. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  13. Fischer M., Ittah A., Liefer I., Gorecki M. Expression and reconstitution of biologically active human acetylcholinesterase from Escherichia coli. Cell Mol Neurobiol. 1993 Feb;13(1):25–38. doi: 10.1007/BF00712987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Francis G. E., Fisher D., Delgado C., Malik F., Gardiner A., Neale D. PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. Int J Hematol. 1998 Jul;68(1):1–18. doi: 10.1016/s0925-5710(98)00039-5. [DOI] [PubMed] [Google Scholar]
  15. Gabrielsson JL, Weiner DL. Methodology for pharmacokinetic/pharmacodynamic data analysis. Pharm Sci Technolo Today. 1999 Jun;2(6):244–252. doi: 10.1016/s1461-5347(99)00162-5. [DOI] [PubMed] [Google Scholar]
  16. Hershfield M. S., Buckley R. H., Greenberg M. L., Melton A. L., Schiff R., Hatem C., Kurtzberg J., Markert M. L., Kobayashi R. H., Kobayashi A. L. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N Engl J Med. 1987 Mar 5;316(10):589–596. doi: 10.1056/NEJM198703053161005. [DOI] [PubMed] [Google Scholar]
  17. Hosea N. A., Radić Z., Tsigelny I., Berman H. A., Quinn D. M., Taylor P. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates. Biochemistry. 1996 Aug 20;35(33):10995–11004. doi: 10.1021/bi9611220. [DOI] [PubMed] [Google Scholar]
  18. Kamisaki Y., Wada H., Yagura T., Matsushima A., Inada Y. Reduction in immunogenicity and clearance rate of Escherichia coli L-asparaginase by modification with monomethoxypolyethylene glycol. J Pharmacol Exp Ther. 1981 Feb;216(2):410–414. [PubMed] [Google Scholar]
  19. Knauf M. J., Bell D. P., Hirtzer P., Luo Z. P., Young J. D., Katre N. V. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J Biol Chem. 1988 Oct 15;263(29):15064–15070. [PubMed] [Google Scholar]
  20. Kronman C., Chitlaru T., Elhanany E., Velan B., Shafferman A. Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins. Demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J Biol Chem. 2000 Sep 22;275(38):29488–29502. doi: 10.1074/jbc.M004298200. [DOI] [PubMed] [Google Scholar]
  21. Kronman C., Velan B., Gozes Y., Leitner M., Flashner Y., Lazar A., Marcus D., Sery T., Papier Y., Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene. 1992 Nov 16;121(2):295–304. doi: 10.1016/0378-1119(92)90134-b. [DOI] [PubMed] [Google Scholar]
  22. Kronman C., Velan B., Marcus D., Ordentlich A., Reuveny S., Shafferman A. Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochem J. 1995 Nov 1;311(Pt 3):959–967. doi: 10.1042/bj3110959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kryger G., Harel M., Giles K., Toker L., Velan B., Lazar A., Kronman C., Barak D., Ariel N., Shafferman A. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr D Biol Crystallogr. 2000 Nov;56(Pt 11):1385–1394. doi: 10.1107/s0907444900010659. [DOI] [PubMed] [Google Scholar]
  24. Lazar A., Reuveny S., Kronman C., Velan B., Shafferman A. Evaluation of anchorage-dependent cell propagation systems for production of human acetylcholinesterase by recombinant 293 cells. Cytotechnology. 1993;13(2):115–123. doi: 10.1007/BF00749938. [DOI] [PubMed] [Google Scholar]
  25. Lundblad R. L., Bradshaw R. A. Applications of site-specific chemical modification in the manufacture of biopharmaceuticals: I. An overview. Biotechnol Appl Biochem. 1997 Dec;26(Pt 3):143–151. [PubMed] [Google Scholar]
  26. Masson P., Froment M. T., Bartels C. F., Lockridge O. Asp7O in the peripheral anionic site of human butyrylcholinesterase. Eur J Biochem. 1996 Jan 15;235(1-2):36–48. doi: 10.1111/j.1432-1033.1996.00036.x. [DOI] [PubMed] [Google Scholar]
  27. Maxwell D. M., Castro C. A., De La Hoz D. M., Gentry M. K., Gold M. B., Solana R. P., Wolfe A. D., Doctor B. P. Protection of rhesus monkeys against soman and prevention of performance decrement by pretreatment with acetylcholinesterase. Toxicol Appl Pharmacol. 1992 Jul;115(1):44–49. doi: 10.1016/0041-008x(92)90365-y. [DOI] [PubMed] [Google Scholar]
  28. Mendelson I., Kronman C., Ariel N., Shafferman A., Velan B. Bovine acetylcholinesterase: cloning, expression and characterization. Biochem J. 1998 Aug 15;334(Pt 1):251–259. doi: 10.1042/bj3340251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Millard C. B., Lockridge O., Broomfield C. A. Design and expression of organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase. Biochemistry. 1995 Dec 12;34(49):15925–15933. doi: 10.1021/bi00049a007. [DOI] [PubMed] [Google Scholar]
  30. Monfardini C., Veronese F. M. Stabilization of substances in circulation. Bioconjug Chem. 1998 Jul-Aug;9(4):418–450. doi: 10.1021/bc970184f. [DOI] [PubMed] [Google Scholar]
  31. Ordentlich A., Barak D., Kronman C., Ariel N., Segall Y., Velan B., Shafferman A. The architecture of human acetylcholinesterase active center probed by interactions with selected organophosphate inhibitors. J Biol Chem. 1996 May 17;271(20):11953–11962. doi: 10.1074/jbc.271.20.11953. [DOI] [PubMed] [Google Scholar]
  32. Radić Z., Duran R., Vellom D. C., Li Y., Cervenansky C., Taylor P. Site of fasciculin interaction with acetylcholinesterase. J Biol Chem. 1994 Apr 15;269(15):11233–11239. [PubMed] [Google Scholar]
  33. Sakane T., Pardridge W. M. Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity. Pharm Res. 1997 Aug;14(8):1085–1091. doi: 10.1023/a:1012117815460. [DOI] [PubMed] [Google Scholar]
  34. Saxena A., Ashani Y., Raveh L., Stevenson D., Patel T., Doctor B. P. Role of oligosaccharides in the pharmacokinetics of tissue-derived and genetically engineered cholinesterases. Mol Pharmacol. 1998 Jan;53(1):112–122. doi: 10.1124/mol.53.1.112. [DOI] [PubMed] [Google Scholar]
  35. Saxena A., Raveh L., Ashani Y., Doctor B. P. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase. Biochemistry. 1997 Jun 17;36(24):7481–7489. doi: 10.1021/bi963156d. [DOI] [PubMed] [Google Scholar]
  36. Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem. 1992 Sep 5;267(25):17640–17648. [PubMed] [Google Scholar]
  37. Shafferman A., Ordentlich A., Barak D., Stein D., Ariel N., Velan B. Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre. Biochem J. 1996 Sep 15;318(Pt 3):833–840. doi: 10.1042/bj3180833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shafferman A., Velan B., Ordentlich A., Kronman C., Grosfeld H., Leitner M., Flashner Y., Cohen S., Barak D., Ariel N. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 1992 Oct;11(10):3561–3568. doi: 10.1002/j.1460-2075.1992.tb05439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Simon S., Krejci E., Massoulié J. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J. 1998 Nov 2;17(21):6178–6187. doi: 10.1093/emboj/17.21.6178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Soreq H., Ben-Aziz R., Prody C. A., Seidman S., Gnatt A., Neville L., Lieman-Hurwitz J., Lev-Lehman E., Ginzberg D., Lipidot-Lifson Y. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9688–9692. doi: 10.1073/pnas.87.24.9688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Velan B., Grosfeld H., Kronman C., Leitner M., Gozes Y., Lazar A., Flashner Y., Marcus D., Cohen S., Shafferman A. The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant. J Biol Chem. 1991 Dec 15;266(35):23977–23984. [PubMed] [Google Scholar]
  42. Wolfe A. D., Rush R. S., Doctor B. P., Koplovitz I., Jones D. Acetylcholinesterase prophylaxis against organophosphate toxicity. Fundam Appl Toxicol. 1987 Aug;9(2):266–270. doi: 10.1016/0272-0590(87)90048-0. [DOI] [PubMed] [Google Scholar]
  43. Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem. 1995 Mar-Apr;6(2):150–165. doi: 10.1021/bc00032a002. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES