Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 1;357(Pt 3):835–842. doi: 10.1042/0264-6021:3570835

Effect of 'binary mitochondrial heteroplasmy' on respiration and ATP synthesis: implications for mitochondrial diseases.

B Korzeniewski 1, M Malgat 1, T Letellier 1, J P Mazat 1
PMCID: PMC1222014  PMID: 11463355

Abstract

Respiratory-chain-complex subunits in mitochondria are encoded by nuclear or mitochondrial DNA. This property might have profound implications for the phenotypic expression of mutations affecting oxidative phosphorylation complexes. The aim of this paper is to study the importance of the origin of the mutation (nuclear or mitochondrial) on the expression of mitochondrial defects. We have therefore developed theoretical models illustrating three mechanisms of nuclear or mitochondrial DNA mutation giving rise to a deficiency in the respiratory-chain complex: (1) a partial deficiency, homogeneously distributed in all of the mitochondria; (2) a complete deficiency, only affecting some of the mitochondria ('binary mitochondrial heteroplasmy'); and (3) a partial deficiency, affecting only some of the mitochondria. We show that mutations affecting oxidative phosphorylation complexes will be expressed in different ways depending on their origins. Although the expression of nuclear or mitochondrial mutations is evidence of a biochemical threshold, we demonstrate that the threshold value depends on the origin and distribution of the mutation (homogeneous or not) and also on the energy demand of the tissue. This last prediction has been confirmed in an experimental model using hexokinase for the simulation of the energy demand and a variation in mitochondrial concentration. We also emphasize the possible role of 'binary mitochondrial heteroplasmy' in the expression of mitochondrial DNA mutations and thus the importance of the origin of the deficit (mutation) for the diagnosis or therapy of mitochondrial diseases.

Full Text

The Full Text of this article is available as a PDF (195.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  2. Attardi G., Yoneda M., Chomyn A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim Biophys Acta. 1995 May 24;1271(1):241–248. doi: 10.1016/0925-4439(95)00034-2. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  4. Clayton D. A. Replication of animal mitochondrial DNA. Cell. 1982 Apr;28(4):693–705. doi: 10.1016/0092-8674(82)90049-6. [DOI] [PubMed] [Google Scholar]
  5. Davey G. P., Canevari L., Clark J. B. Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. J Neurochem. 1997 Dec;69(6):2564–2570. doi: 10.1046/j.1471-4159.1997.69062564.x. [DOI] [PubMed] [Google Scholar]
  6. Davey G. P., Clark J. B. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem. 1996 Apr;66(4):1617–1624. doi: 10.1046/j.1471-4159.1996.66041617.x. [DOI] [PubMed] [Google Scholar]
  7. Davey G. P., Peuchen S., Clark J. B. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem. 1998 May 22;273(21):12753–12757. doi: 10.1074/jbc.273.21.12753. [DOI] [PubMed] [Google Scholar]
  8. DiMauro S., Bonilla E., Zeviani M., Nakagawa M., DeVivo D. C. Mitochondrial myopathies. Ann Neurol. 1985 Jun;17(6):521–538. doi: 10.1002/ana.410170602. [DOI] [PubMed] [Google Scholar]
  9. Enriquez J. A., Chomyn A., Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet. 1995 May;10(1):47–55. doi: 10.1038/ng0595-47. [DOI] [PubMed] [Google Scholar]
  10. Grossman L. I., Shoubridge E. A. Mitochondrial genetics and human disease. Bioessays. 1996 Dec;18(12):983–991. doi: 10.1002/bies.950181208. [DOI] [PubMed] [Google Scholar]
  11. Hayashi J., Ohta S., Kikuchi A., Takemitsu M., Goto Y., Nonaka I. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10614–10618. doi: 10.1073/pnas.88.23.10614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayashi J., Takemitsu M., Goto Y., Nonaka I. Human mitochondria and mitochondrial genome function as a single dynamic cellular unit. J Cell Biol. 1994 Apr;125(1):43–50. doi: 10.1083/jcb.125.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jenuth J. P., Peterson A. C., Fu K., Shoubridge E. A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet. 1996 Oct;14(2):146–151. doi: 10.1038/ng1096-146. [DOI] [PubMed] [Google Scholar]
  14. Korzeniewski B., Harper M. E., Brand M. D. Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or by vasopressin. Biochim Biophys Acta. 1995 May 10;1229(3):315–322. doi: 10.1016/0005-2728(95)00008-7. [DOI] [PubMed] [Google Scholar]
  15. Korzeniewski B., Mazat J. P. Theoretical studies on control of oxidative phosphorylation in muscle mitochondria at different energy demands and oxygen concentrations. Acta Biotheor. 1996 Nov;44(3-4):263–269. doi: 10.1007/BF00046532. [DOI] [PubMed] [Google Scholar]
  16. Korzeniewski B., Mazat J. P. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies. Biochem J. 1996 Oct 1;319(Pt 1):143–148. doi: 10.1042/bj3190143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Korzeniewski B. Regulation of ATP supply during muscle contraction: theoretical studies. Biochem J. 1998 Mar 15;330(Pt 3):1189–1195. doi: 10.1042/bj3301189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Korzeniewski B. Regulation of ATP supply in mammalian skeletal muscle during resting state-->intensive work transition. Biophys Chem. 2000 Jan 10;83(1):19–34. doi: 10.1016/s0301-4622(99)00120-9. [DOI] [PubMed] [Google Scholar]
  19. Letellier T., Heinrich R., Malgat M., Mazat J. P. The kinetic basis of threshold effects observed in mitochondrial diseases: a systemic approach. Biochem J. 1994 Aug 15;302(Pt 1):171–174. doi: 10.1042/bj3020171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Letellier T., Malgat M., Mazat J. P. Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Biochim Biophys Acta. 1993 Feb 8;1141(1):58–64. doi: 10.1016/0005-2728(93)90189-m. [DOI] [PubMed] [Google Scholar]
  21. Letellier T., Malgat M., Rossignol R., Mazat J. P. Metabolic control analysis and mitochondrial pathologies. Mol Cell Biochem. 1998 Jul;184(1-2):409–417. [PubMed] [Google Scholar]
  22. Lightowlers R. N., Chinnery P. F., Turnbull D. M., Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. 1997 Nov;13(11):450–455. doi: 10.1016/s0168-9525(97)01266-3. [DOI] [PubMed] [Google Scholar]
  23. Marchington D. R., Macaulay V., Hartshorne G. M., Barlow D., Poulton J. Evidence from human oocytes for a genetic bottleneck in an mtDNA disease. Am J Hum Genet. 1998 Sep;63(3):769–775. doi: 10.1086/302009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Munnich A., Rötig A., Chretien D., Saudubray J. M., Cormier V., Rustin P. Clinical presentations and laboratory investigations in respiratory chain deficiency. Eur J Pediatr. 1996 Apr;155(4):262–274. doi: 10.1007/BF02002711. [DOI] [PubMed] [Google Scholar]
  25. Oliver N. A., Wallace D. C. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction. Mol Cell Biol. 1982 Jan;2(1):30–41. doi: 10.1128/mcb.2.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Poulton J., Macaulay V., Marchington D. R. Mitochondrial genetics '98 is the bottleneck cracked? Am J Hum Genet. 1998 Apr;62(4):752–757. doi: 10.1086/301811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rossignol R., Letellier T., Malgat M., Rocher C., Mazat J. P. Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J. 2000 Apr 1;347(Pt 1):45–53. [PMC free article] [PubMed] [Google Scholar]
  28. Rossignol R., Malgat M., Mazat J. P., Letellier T. Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J Biol Chem. 1999 Nov 19;274(47):33426–33432. doi: 10.1074/jbc.274.47.33426. [DOI] [PubMed] [Google Scholar]
  29. Takai D., Inoue K., Goto Y. i., Nonaka I., Hayashi J. I. The interorganellar interaction between distinct human mitochondria with deletion mutant mtDNA from a patient with mitochondrial disease and with HeLa mtDNA. J Biol Chem. 1997 Feb 28;272(9):6028–6033. doi: 10.1074/jbc.272.9.6028. [DOI] [PubMed] [Google Scholar]
  30. Villani G., Attardi G. In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1166–1171. doi: 10.1073/pnas.94.4.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Villani G., Greco M., Papa S., Attardi G. Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem. 1998 Nov 27;273(48):31829–31836. doi: 10.1074/jbc.273.48.31829. [DOI] [PubMed] [Google Scholar]
  32. Wallace D. C. 1994 William Allan Award Address. Mitochondrial DNA variation in human evolution, degenerative disease, and aging. Am J Hum Genet. 1995 Aug;57(2):201–223. [PMC free article] [PubMed] [Google Scholar]
  33. Wallace D. C. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–1212. doi: 10.1146/annurev.bi.61.070192.005523. [DOI] [PubMed] [Google Scholar]
  34. Wallace D. C. Maternal genes: mitochondrial diseases. Birth Defects Orig Artic Ser. 1987;23(3):137–190. [PubMed] [Google Scholar]
  35. Wallace D. C. Mitochondrial diseases: genotype versus phenotype. Trends Genet. 1993 Apr;9(4):128–133. doi: 10.1016/0168-9525(93)90207-x. [DOI] [PubMed] [Google Scholar]
  36. Wallace D. C., Zheng X. X., Lott M. T., Shoffner J. M., Hodge J. A., Kelley R. I., Epstein C. M., Hopkins L. C. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988 Nov 18;55(4):601–610. doi: 10.1016/0092-8674(88)90218-8. [DOI] [PubMed] [Google Scholar]
  37. Yoneda M., Miyatake T., Attardi G. Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol. 1994 Apr;14(4):2699–2712. doi: 10.1128/mcb.14.4.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yoneda M., Miyatake T., Attardi G. Heteroplasmic mitochondrial tRNA(Lys) mutation and its complementation in MERRF patient-derived mitochondrial transformants. Muscle Nerve Suppl. 1995;3:S95–101. doi: 10.1002/mus.880181420. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES