Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 1;357(Pt 3):905–910. doi: 10.1042/0264-6021:3570905

Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells.

J H Clarke 1, A J Letcher 1, C S D'santos 1, J R Halstead 1, R F Irvine 1, N Divecha 1
PMCID: PMC1222024  PMID: 11463365

Abstract

Previous data suggest the existence of discrete pools of inositol lipids, which are components of a nuclear phosphoinositide (PI) cycle. However, it is not known whether the contents of these pools are regulated during cell proliferation. In the present study we demonstrate that the mass levels of three important constituents of the nuclear PI cycle are regulated during the cell cycle. Radioactive label incorporation into PtdIns(4,5)P(2) was seen to increase dramatically as synchronized cells entered S-phase. This did not coincide with any significant changes in the nuclear mass levels of this lipid, suggesting that the rate of turnover of this molecule was increased. Levels of PtdIns4P, the major substrate for PtdIns(4,5)P(2) production by Type I PtdInsP kinases (PIPkins), were regulated during the cell cycle and indicated a complex relationship between these two lipids. An alternative substrate for PtdIns(4,5)P(2), PtdIns5P, phosphorylated by Type II PIPkins, was present in nuclei at much smaller amounts than the PtdIns4P, and thus is unlikely to contribute significantly to PtdIns(4,5)P(2) turnover. However, a large increase in nuclear PtdIns5P mass was observed when murine erythroleukaemia cells are in G(1), and this could represent a potential pool of nuclear inositol lipid that has a specific signalling role. Analysis of extracted lipid fractions indicated the absence of any PtdIns3P in these nuclei.

Full Text

The Full Text of this article is available as a PDF (176.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bahk Y. Y., Lee Y. H., Lee T. G., Seo J., Ryu S. H., Suh P. G. Two forms of phospholipase C-beta 1 generated by alternative splicing. J Biol Chem. 1994 Mar 18;269(11):8240–8245. [PubMed] [Google Scholar]
  3. Bahk Y. Y., Song H., Baek S. H., Park B. Y., Kim H., Ryu S. H., Suh P. G. Localization of two forms of phospholipase C-beta1, a and b, in C6Bu-1 cells. Biochim Biophys Acta. 1998 Jan 5;1389(1):76–80. doi: 10.1016/s0005-2760(97)00128-8. [DOI] [PubMed] [Google Scholar]
  4. Banfić H., Zizak M., Divecha N., Irvine R. F. Nuclear diacylglycerol is increased during cell proliferation in vivo. Biochem J. 1993 Mar 15;290(Pt 3):633–636. doi: 10.1042/bj2900633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  6. Boronenkov I. V., Loijens J. C., Umeda M., Anderson R. A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell. 1998 Dec;9(12):3547–3560. doi: 10.1091/mbc.9.12.3547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ciruela A., Hinchliffe K. A., Divecha N., Irvine R. F. Nuclear targeting of the beta isoform of type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its alpha-helix 7. Biochem J. 2000 Mar 15;346(Pt 3):587–591. [PMC free article] [PubMed] [Google Scholar]
  8. Clarke N. G., Dawson R. M. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J. 1981 Apr 1;195(1):301–306. doi: 10.1042/bj1950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cocco L., Gilmour R. S., Ognibene A., Letcher A. J., Manzoli F. A., Irvine R. F. Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J. 1987 Dec 15;248(3):765–770. doi: 10.1042/bj2480765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook S. J., Palmer S., Plevin R., Wakelam M. J. Mass measurement of inositol 1,4,5-trisphosphate and sn-1,2-diacylglycerol in bombesin-stimulated Swiss 3T3 mouse fibroblasts. Biochem J. 1990 Jan 15;265(2):617–620. doi: 10.1042/bj2650617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. D'Santos C. S., Clarke J. H., Divecha N. Phospholipid signalling in the nucleus. Een DAG uit het leven van de inositide signalering in de nucleus. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):201–232. doi: 10.1016/s0005-2760(98)00146-5. [DOI] [PubMed] [Google Scholar]
  12. D'Santos C. S., Clarke J. H., Irvine R. F., Divecha N. Nuclei contain two differentially regulated pools of diacylglycerol. Curr Biol. 1999 Apr 22;9(8):437–440. doi: 10.1016/s0960-9822(99)80193-6. [DOI] [PubMed] [Google Scholar]
  13. Divecha N., Banfić H., Irvine R. F. The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J. 1991 Nov;10(11):3207–3214. doi: 10.1002/j.1460-2075.1991.tb04883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Faenza I., Matteucci A., Manzoli L., Billi A. M., Aluigi M., Peruzzi D., Vitale M., Castorina S., Suh P. G., Cocco L. A role for nuclear phospholipase Cbeta 1 in cell cycle control. J Biol Chem. 2000 Sep 29;275(39):30520–30524. doi: 10.1074/jbc.M004630200. [DOI] [PubMed] [Google Scholar]
  15. Hennager D. J., Welsh M. J., DeLisle S. Changes in either cytosolic or nucleoplasmic inositol 1,4,5-trisphosphate levels can control nuclear Ca2+ concentration. J Biol Chem. 1995 Mar 10;270(10):4959–4962. doi: 10.1074/jbc.270.10.4959. [DOI] [PubMed] [Google Scholar]
  16. Hinchliffe K. A., Ciruela A., Irvine R. F. PIPkins1, their substrates and their products: new functions for old enzymes. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):87–104. doi: 10.1016/s0005-2760(98)00140-4. [DOI] [PubMed] [Google Scholar]
  17. Humbert J. P., Matter N., Artault J. C., Köppler P., Malviya A. N. Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem. 1996 Jan 5;271(1):478–485. doi: 10.1074/jbc.271.1.478. [DOI] [PubMed] [Google Scholar]
  18. Jarpe M. B., Leach K. L., Raben D. M. Alpha-thrombin-induced nuclear sn-1,2-diacylglycerols are derived from phosphatidylcholine hydrolysis in cultured fibroblasts. Biochemistry. 1994 Jan 18;33(2):526–534. doi: 10.1021/bi00168a018. [DOI] [PubMed] [Google Scholar]
  19. Morris J. B., Hinchliffe K. A., Ciruela A., Letcher A. J., Irvine R. F. Thrombin stimulation of platelets causes an increase in phosphatidylinositol 5-phosphate revealed by mass assay. FEBS Lett. 2000 Jun 9;475(1):57–60. doi: 10.1016/s0014-5793(00)01625-2. [DOI] [PubMed] [Google Scholar]
  20. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  21. Payrastre B., Nievers M., Boonstra J., Breton M., Verkleij A. J., Van Bergen en Henegouwen P. M. A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J Biol Chem. 1992 Mar 15;267(8):5078–5084. [PubMed] [Google Scholar]
  22. Rameh L. E., Tolias K. F., Duckworth B. C., Cantley L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997 Nov 13;390(6656):192–196. doi: 10.1038/36621. [DOI] [PubMed] [Google Scholar]
  23. Schacht J. Purification of polyphosphoinositides by chromatography on immobilized neomycin. J Lipid Res. 1978 Nov;19(8):1063–1067. [PubMed] [Google Scholar]
  24. Smith C. D., Wells W. W. Phosphorylation of rat liver nuclear envelopes. II. Characterization of in vitro lipid phosphorylation. J Biol Chem. 1983 Aug 10;258(15):9368–9373. [PubMed] [Google Scholar]
  25. Sorensen A. M., Baran D. T. 1 alpha,25-Dihydroxyvitamin D3 rapidly alters phospholipid metabolism in the nuclear envelope of osteoblasts. J Cell Biochem. 1995 May;58(1):15–21. doi: 10.1002/jcb.240580104. [DOI] [PubMed] [Google Scholar]
  26. Topham M. K., Bunting M., Zimmerman G. A., McIntyre T. M., Blackshear P. J., Prescott S. M. Protein kinase C regulates the nuclear localization of diacylglycerol kinase-zeta. Nature. 1998 Aug 13;394(6694):697–700. doi: 10.1038/29337. [DOI] [PubMed] [Google Scholar]
  27. Vann L. R., Wooding F. B., Irvine R. F., Divecha N. Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem J. 1997 Oct 15;327(Pt 2):569–576. doi: 10.1042/bj3270569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. York J. D., Majerus P. W. Nuclear phosphatidylinositols decrease during S-phase of the cell cycle in HeLa cells. J Biol Chem. 1994 Mar 18;269(11):7847–7850. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES