Abstract
ATP receptors are ubiquitously expressed and are potential targets for the therapy of a number of disorders. However, delivery of ATP or other nucleotides to specific tissues is problematic, and no pharmacological means to stimulate the release of endogenous ATP has been described. We examined the effects of the bile acid ursodeoxycholic acid (UDCA) on ATP release into bile, since this bile acid is the only agent known to be of therapeutic benefit in secretory disorders of the liver, and since its mechanism of action is not established. Both UDCA and its taurine conjugate stimulated secretion of ATP by isolated rat hepatocytes, and produced measurable increases in ATP in bile of isolated rat liver. Perfusion of ATP into microdissected bile-duct segments induced Ca(2+) signalling in bile-duct epithelia, while perfusion of bile acid did not. Thus UDCA may promote bile flow by inducing hepatocytes to release ATP into bile, which then stimulates fluid and electrolyte secretion by bile-duct epithelia downstream via changes in cytosolic Ca(2+). Moreover, these findings demonstrate the feasibility of using pharmacological means to induce secretion of endogenous ATP. Since the liver and other epithelial organs express luminal ATP receptors, these findings more generally suggest that a mechanism exists for pharmacological activation of this paracrine signalling pathway. This strategy may be useful for treatment of cystic fibrosis and other secretory disorders of the liver and other epithelial tissues.
Full Text
The Full Text of this article is available as a PDF (136.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham E. H., Prat A. G., Gerweck L., Seneveratne T., Arceci R. J., Kramer R., Guidotti G., Cantiello H. F. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):312–316. doi: 10.1073/pnas.90.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beuers U., Boyer J. L., Paumgartner G. Ursodeoxycholic acid in cholestasis: potential mechanisms of action and therapeutic applications. Hepatology. 1998 Dec;28(6):1449–1453. doi: 10.1002/hep.510280601. [DOI] [PubMed] [Google Scholar]
- Beuers U., Nathanson M. H., Boyer J. L. Effects of tauroursodeoxycholic acid on cytosolic Ca2+ signals in isolated rat hepatocytes. Gastroenterology. 1993 Feb;104(2):604–612. doi: 10.1016/0016-5085(93)90433-d. [DOI] [PubMed] [Google Scholar]
- Brown R. S., Jr, Lomri N., De Voss J., Rahmaoui C. M., Xie M. H., Hua T., Lidofsky S. D., Scharschmidt B. F. Enhanced secretion of glycocholic acid in a specially adapted cell line is associated with overexpression of apparently novel ATP-binding cassette proteins. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5421–5425. doi: 10.1073/pnas.92.12.5421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan H. C., Cheung W. T., Leung P. Y., Wu L. J., Chew S. B., Ko W. H., Wong P. Y. Purinergic regulation of anion secretion by cystic fibrosis pancreatic duct cells. Am J Physiol. 1996 Aug;271(2 Pt 1):C469–C477. doi: 10.1152/ajpcell.1996.271.2.C469. [DOI] [PubMed] [Google Scholar]
- Chari R. S., Schutz S. M., Haebig J. E., Shimokura G. H., Cotton P. B., Fitz J. G., Meyers W. C. Adenosine nucleotides in bile. Am J Physiol. 1996 Feb;270(2 Pt 1):G246–G252. doi: 10.1152/ajpgi.1996.270.2.G246. [DOI] [PubMed] [Google Scholar]
- Colombo C., Battezzati P. M., Podda M., Bettinardi N., Giunta A. Ursodeoxycholic acid for liver disease associated with cystic fibrosis: a double-blind multicenter trial. The Italian Group for the Study of Ursodeoxycholic Acid in Cystic Fibrosis. Hepatology. 1996 Jun;23(6):1484–1490. doi: 10.1002/hep.510230627. [DOI] [PubMed] [Google Scholar]
- Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
- Dumont M., Erlinger S., Uchman S. Hypercholeresis induced by ursodeoxycholic acid and 7-ketolithocholic acid in the rat: possible role of bicarbonate transport. Gastroenterology. 1980 Jul;79(1):82–89. [PubMed] [Google Scholar]
- Fabre J. E., Nguyen M., Latour A., Keifer J. A., Audoly L. P., Coffman T. M., Koller B. H. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med. 1999 Oct;5(10):1199–1202. doi: 10.1038/13522. [DOI] [PubMed] [Google Scholar]
- GREEN A., MCELROY W. D. Function of adenosine triphosphate in the activation of luciferin. Arch Biochem Biophys. 1956 Oct;64(2):257–271. doi: 10.1016/0003-9861(56)90268-5. [DOI] [PubMed] [Google Scholar]
- Gerloff T., Stieger B., Hagenbuch B., Madon J., Landmann L., Roth J., Hofmann A. F., Meier P. J. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998 Apr 17;273(16):10046–10050. doi: 10.1074/jbc.273.16.10046. [DOI] [PubMed] [Google Scholar]
- Grierson J. P., Meldolesi J. Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously released ATP. J Biol Chem. 1995 Mar 3;270(9):4451–4456. doi: 10.1074/jbc.270.9.4451. [DOI] [PubMed] [Google Scholar]
- Gurantz D., Hofmann A. F. Influence of bile acid structure on bile flow and biliary lipid secretion in the hamster. Am J Physiol. 1984 Dec;247(6 Pt 1):G736–G748. doi: 10.1152/ajpgi.1984.247.6.G736. [DOI] [PubMed] [Google Scholar]
- Invernizzi P., Setchell K. D., Crosignani A., Battezzati P. M., Larghi A., O'Connell N. C., Podda M. Differences in the metabolism and disposition of ursodeoxycholic acid and of its taurine-conjugated species in patients with primary biliary cirrhosis. Hepatology. 1999 Feb;29(2):320–327. doi: 10.1002/hep.510290220. [DOI] [PubMed] [Google Scholar]
- Javitt N. B., Emerman S. Effect of sodium taurolithocholate on bile flow and bile acid exeretion. J Clin Invest. 1968 May;47(5):1002–1014. doi: 10.1172/JCI105790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knowles M. R., Clarke L. L., Boucher R. C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med. 1991 Aug 22;325(8):533–538. doi: 10.1056/NEJM199108223250802. [DOI] [PubMed] [Google Scholar]
- Knowles M. R., Olivier K. N., Hohneker K. W., Robinson J., Bennett W. D., Boucher R. C. Pharmacologic treatment of abnormal ion transport in the airway epithelium in cystic fibrosis. Chest. 1995 Feb;107(2 Suppl):71S–76S. doi: 10.1378/chest.107.2_supplement.71s. [DOI] [PubMed] [Google Scholar]
- Lazarowski E. R., Homolya L., Boucher R. C., Harden T. K. Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J Biol Chem. 1997 Sep 26;272(39):24348–24354. doi: 10.1074/jbc.272.39.24348. [DOI] [PubMed] [Google Scholar]
- Lee R. T., Denburg J. L., McElroy W. D. Substrate-binding properties of firefly luciferase. II. ATP-binding site. Arch Biochem Biophys. 1970 Nov;141(1):38–52. doi: 10.1016/0003-9861(70)90103-7. [DOI] [PubMed] [Google Scholar]
- Leung A. Y., Wong P. Y., Yankaskas J. R., Boucher R. C. cAMP- but not Ca(2+)-regulated Cl- conductance is lacking in cystic fibrosis mice epididymides and seminal vesicles. Am J Physiol. 1996 Jul;271(1 Pt 1):C188–C193. doi: 10.1152/ajpcell.1996.271.1.C188. [DOI] [PubMed] [Google Scholar]
- Lin S. H. Localization of the ecto-ATPase (ecto-nucleotidase) in the rat hepatocyte plasma membrane. Implications for the functions of the ecto-ATPase. J Biol Chem. 1989 Aug 25;264(24):14403–14407. [PubMed] [Google Scholar]
- Ma W., Korngreen A., Uzlaner N., Priel Z., Silberberg S. D. Extracellular sodium regulates airway ciliary motility by inhibiting a P2X receptor. Nature. 1999 Aug 26;400(6747):894–897. doi: 10.1038/23743. [DOI] [PubMed] [Google Scholar]
- Masyuk A. I., Gong A. Y., Kip S., Burke M. J., LaRusso N. F. Perfused rat intrahepatic bile ducts secrete and absorb water, solute, and ions. Gastroenterology. 2000 Dec;119(6):1672–1680. doi: 10.1053/gast.2000.20248. [DOI] [PubMed] [Google Scholar]
- Mennone A., Alvaro D., Cho W., Boyer J. L. Isolation of small polarized bile duct units. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6527–6531. doi: 10.1073/pnas.92.14.6527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulryan K., Gitterman D. P., Lewis C. J., Vial C., Leckie B. J., Cobb A. L., Brown J. E., Conley E. C., Buell G., Pritchard C. A. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature. 2000 Jan 6;403(6765):86–89. doi: 10.1038/47495. [DOI] [PubMed] [Google Scholar]
- Nathanson M. H., Burgstahler A. D., Mennone A., Dranoff J. A., Rios-Velez L. Stimulation of bile duct epithelial secretion by glybenclamide in normal and cholestatic rat liver. J Clin Invest. 1998 Jun 15;101(12):2665–2676. doi: 10.1172/JCI2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Máille E. R. The influence of micelle formation on bile salt secretion. J Physiol. 1980 May;302:107–120. doi: 10.1113/jphysiol.1980.sp013232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osipchuk Y., Cahalan M. Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature. 1992 Sep 17;359(6392):241–244. doi: 10.1038/359241a0. [DOI] [PubMed] [Google Scholar]
- Paradiso A. M., Mason S. J., Lazarowski E. R., Boucher R. C. Membrane-restricted regulation of Ca2+ release and influx in polarized epithelia. Nature. 1995 Oct 19;377(6550):643–646. doi: 10.1038/377643a0. [DOI] [PubMed] [Google Scholar]
- Parr C. E., Sullivan D. M., Paradiso A. M., Lazarowski E. R., Burch L. H., Olsen J. C., Erb L., Weisman G. A., Boucher R. C., Turner J. T. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3275–3279. doi: 10.1073/pnas.91.8.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poupon R. E., Lindor K. D., Cauch-Dudek K., Dickson E. R., Poupon R., Heathcote E. J. Combined analysis of randomized controlled trials of ursodeoxycholic acid in primary biliary cirrhosis. Gastroenterology. 1997 Sep;113(3):884–890. doi: 10.1016/s0016-5085(97)70183-5. [DOI] [PubMed] [Google Scholar]
- Poupon R. E., Poupon R., Balkau B. Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med. 1994 May 12;330(19):1342–1347. doi: 10.1056/NEJM199405123301903. [DOI] [PubMed] [Google Scholar]
- Prieto J., García N., Martí-Climent J. M., Peñuelas I., Richter J. A., Medina J. F. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology. 1999 Jul;117(1):167–172. doi: 10.1016/s0016-5085(99)70564-0. [DOI] [PubMed] [Google Scholar]
- Ralevic V., Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998 Sep;50(3):413–492. [PubMed] [Google Scholar]
- Reddy M. M., Quinton P. M., Haws C., Wine J. J., Grygorczyk R., Tabcharani J. A., Hanrahan J. W., Gunderson K. L., Kopito R. R. Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science. 1996 Mar 29;271(5257):1876–1879. doi: 10.1126/science.271.5257.1876. [DOI] [PubMed] [Google Scholar]
- Reisin I. L., Prat A. G., Abraham E. H., Amara J. F., Gregory R. J., Ausiello D. A., Cantiello H. F. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem. 1994 Aug 12;269(32):20584–20591. [PubMed] [Google Scholar]
- Roberts S. K., Kuntz S. M., Gores G. J., LaRusso N. F. Regulation of bicarbonate-dependent ductular bile secretion assessed by lumenal micropuncture of isolated rodent intrahepatic bile ducts. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9080–9084. doi: 10.1073/pnas.90.19.9080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roman R. M., Wang Y., Lidofsky S. D., Feranchak A. P., Lomri N., Scharschmidt B. F., Fitz J. G. Hepatocellular ATP-binding cassette protein expression enhances ATP release and autocrine regulation of cell volume. J Biol Chem. 1997 Aug 29;272(35):21970–21976. doi: 10.1074/jbc.272.35.21970. [DOI] [PubMed] [Google Scholar]
- Schlenker T., Fitz J. G. Ca(2+)-activated C1- channels in a human biliary cell line: regulation by Ca2+/calmodulin-dependent protein kinase. Am J Physiol. 1996 Aug;271(2 Pt 1):G304–G310. doi: 10.1152/ajpgi.1996.271.2.G304. [DOI] [PubMed] [Google Scholar]
- Schlenker T., Romac J. M., Sharara A. I., Roman R. M., Kim S. J., LaRusso N., Liddle R. A., Fitz J. G. Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes. Am J Physiol. 1997 Nov;273(5 Pt 1):G1108–G1117. doi: 10.1152/ajpgi.1997.273.5.G1108. [DOI] [PubMed] [Google Scholar]
- Schlosser S. F., Burgstahler A. D., Nathanson M. H. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9948–9953. doi: 10.1073/pnas.93.18.9948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwiebert E. M., Egan M. E., Hwang T. H., Fulmer S. B., Allen S. S., Cutting G. R., Guggino W. B. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell. 1995 Jun 30;81(7):1063–1073. doi: 10.1016/s0092-8674(05)80011-x. [DOI] [PubMed] [Google Scholar]
- Zegarra-Moran O., Sacco O., Romano L., Rossi G. A., Galietta L. J. Cl- currents activated by extracellular nucleotides in human bronchial cells. J Membr Biol. 1997 Apr 1;156(3):297–305. doi: 10.1007/s002329900209. [DOI] [PubMed] [Google Scholar]
- Zeng W., Lee M. G., Muallem S. Membrane-specific regulation of Cl- channels by purinergic receptors in rat submandibular gland acinar and duct cells. J Biol Chem. 1997 Dec 26;272(52):32956–32965. doi: 10.1074/jbc.272.52.32956. [DOI] [PubMed] [Google Scholar]