Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 15;358(Pt 1):17–24. doi: 10.1042/0264-6021:3580017

Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes.

F Zaucke 1, R Dinser 1, P Maurer 1, M Paulsson 1
PMCID: PMC1222027  PMID: 11485547

Abstract

Primary chondrocytes dedifferentiate in serial monolayer with respect to their morphological and biosynthetic phenotype. They change from a round to a flattened fibroblast-like shape, and collagen I is secreted instead of the cartilage-specific collagen II. We analysed in detail the time course of dedifferentiation of mature bovine articular chondrocytes in monolayer for up to 32 weeks. Assessment of RNA expression by reverse transcription-PCR led to the identification of two novel phenotypical markers, the cartilage oligomeric matrix protein (COMP) and collagen IX, which are down-regulated faster than the widely accepted marker, collagen II. The different kinetics of COMP and collagen expression suggest differential regulation at the level of transcription. Immunostaining and metabolic labelling experiments confirmed the switch in the collagen expression pattern and the rapid down-regulation of de novo synthesis of COMP and collagen IX. Culture of chondrocytes in a three-dimensional matrix is known to stabilize the chondrocytic phenotype. We maintained cells for up to 28 weeks in an alginate bead system, which prevented dedifferentiation and led to a stabilization of collagen and COMP expression. Immunohistochemical analysis of the alginate beads revealed a similar distribution of matrix proteins to that found in vivo. Chondrocytes were transferred after a variable length of monolayer culture into the alginate matrix and the potential for redifferentiation was investigated. The re-expression of COMP and collagen IX was differentially regulated. The expression of COMP was re-induced within days after transfer into the three-dimensional matrix, while the expression of collagen IX was irreversibly down-regulated. In summary, these results demonstrate that the potential for redifferentiation decreases with increasing length of monolayer culture and show that the alginate bead system represents an attractive in vitro model to study the chondrocyte de- and re-differentiation processes, as well as extracellular matrix assembly.

Full Text

The Full Text of this article is available as a PDF (333.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells. 3. The reversible behavior of chondrocytes in primary cultures. J Cell Biol. 1966 Mar;28(3):473–487. doi: 10.1083/jcb.28.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benya P. D., Padilla S. R., Nimni M. E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978 Dec;15(4):1313–1321. doi: 10.1016/0092-8674(78)90056-9. [DOI] [PubMed] [Google Scholar]
  3. Benya P. D., Shaffer J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982 Aug;30(1):215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
  4. Bonaventure J., Kadhom N., Cohen-Solal L., Ng K. H., Bourguignon J., Lasselin C., Freisinger P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res. 1994 May;212(1):97–104. doi: 10.1006/excr.1994.1123. [DOI] [PubMed] [Google Scholar]
  5. Briggs M. D., Hoffman S. M., King L. M., Olsen A. S., Mohrenweiser H., Leroy J. G., Mortier G. R., Rimoin D. L., Lachman R. S., Gaines E. S. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet. 1995 Jul;10(3):330–336. doi: 10.1038/ng0795-330. [DOI] [PubMed] [Google Scholar]
  6. Brittberg M., Lindahl A., Nilsson A., Ohlsson C., Isaksson O., Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994 Oct 6;331(14):889–895. doi: 10.1056/NEJM199410063311401. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Demoor-Fossard M., Redini F., Boittin M., Pujol J. P. Expression of decorin and biglycan by rabbit articular chondrocytes. Effects of cytokines and phenotypic modulation. Biochim Biophys Acta. 1998 Jun 16;1398(2):179–191. doi: 10.1016/s0167-4781(98)00044-x. [DOI] [PubMed] [Google Scholar]
  9. Fragonas E., Valente M., Pozzi-Mucelli M., Toffanin R., Rizzo R., Silvestri F., Vittur F. Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials. 2000 Apr;21(8):795–801. doi: 10.1016/s0142-9612(99)00241-0. [DOI] [PubMed] [Google Scholar]
  10. Gregory K. E., Marsden M. E., Anderson-MacKenzie J., Bard J. B., Bruckner P., Farjanel J., Robins S. P., Hulmes D. J. Abnormal collagen assembly, though normal phenotype, in alginate bead cultures of chick embryo chondrocytes. Exp Cell Res. 1999 Jan 10;246(1):98–107. doi: 10.1006/excr.1998.4291. [DOI] [PubMed] [Google Scholar]
  11. Hecht J. T., Nelson L. D., Crowder E., Wang Y., Elder F. F., Harrison W. R., Francomano C. A., Prange C. K., Lennon G. G., Deere M. Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet. 1995 Jul;10(3):325–329. doi: 10.1038/ng0795-325. [DOI] [PubMed] [Google Scholar]
  12. Hedbom E., Antonsson P., Hjerpe A., Aeschlimann D., Paulsson M., Rosa-Pimentel E., Sommarin Y., Wendel M., Oldberg A., Heinegård D. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. 1992 Mar 25;267(9):6132–6136. [PubMed] [Google Scholar]
  13. Häuselmann H. J., Fernandes R. J., Mok S. S., Schmid T. M., Block J. A., Aydelotte M. B., Kuettner K. E., Thonar E. J. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994 Jan;107(Pt 1):17–27. doi: 10.1242/jcs.107.1.17. [DOI] [PubMed] [Google Scholar]
  14. Häuselmann H. J., Masuda K., Hunziker E. B., Neidhart M., Mok S. S., Michel B. A., Thonar E. J. Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am J Physiol. 1996 Sep;271(3 Pt 1):C742–C752. doi: 10.1152/ajpcell.1996.271.3.C742. [DOI] [PubMed] [Google Scholar]
  15. Kim Y. J., Sah R. L., Doong J. Y., Grodzinsky A. J. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 1988 Oct;174(1):168–176. doi: 10.1016/0003-2697(88)90532-5. [DOI] [PubMed] [Google Scholar]
  16. Lemare F., Steimberg N., Le Griel C., Demignot S., Adolphe M. Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin-1beta. J Cell Physiol. 1998 Aug;176(2):303–313. doi: 10.1002/(SICI)1097-4652(199808)176:2<303::AID-JCP8>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  17. Liu H., Lee Y. W., Dean M. F. Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim Biophys Acta. 1998 Nov 27;1425(3):505–515. doi: 10.1016/s0304-4165(98)00105-6. [DOI] [PubMed] [Google Scholar]
  18. Loty S., Sautier J. M., Loty C., Boulekbache H., Kokubo T., Forest N. Cartilage formation by fetal rat chondrocytes cultured in alginate beads: a proposed model for investigating tissue-biomaterial interactions. J Biomed Mater Res. 1998 Nov;42(2):213–222. doi: 10.1002/(sici)1097-4636(199811)42:2<213::aid-jbm6>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  19. Marijnissen W. J., van Osch G. J., Aigner J., Verwoerd-Verhoef H. L., Verhaar J. A. Tissue-engineered cartilage using serially passaged articular chondrocytes. Chondrocytes in alginate, combined in vivo with a synthetic (E210) or biologic biodegradable carrier (DBM). Biomaterials. 2000 Mar;21(6):571–580. doi: 10.1016/s0142-9612(99)00218-5. [DOI] [PubMed] [Google Scholar]
  20. Nehrer S., Spector M., Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res. 1999 Aug;(365):149–162. doi: 10.1097/00003086-199908000-00020. [DOI] [PubMed] [Google Scholar]
  21. O'Driscoll S. W., Salter R. B., Keeley F. W. A method for quantitative analysis of ratios of types I and II collagen in small samples of articular cartilage. Anal Biochem. 1985 Mar;145(2):277–285. doi: 10.1016/0003-2697(85)90362-8. [DOI] [PubMed] [Google Scholar]
  22. Peterson L., Minas T., Brittberg M., Nilsson A., Sjögren-Jansson E., Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000 May;(374):212–234. doi: 10.1097/00003086-200005000-00020. [DOI] [PubMed] [Google Scholar]
  23. Petit B., Masuda K., D'Souza A. L., Otten L., Pietryla D., Hartmann D. J., Morris N. P., Uebelhart D., Schmid T. M., Thonar E. J. Characterization of crosslinked collagens synthesized by mature articular chondrocytes cultured in alginate beads: comparison of two distinct matrix compartments. Exp Cell Res. 1996 May 25;225(1):151–161. doi: 10.1006/excr.1996.0166. [DOI] [PubMed] [Google Scholar]
  24. Rahfoth B., Weisser J., Sternkopf F., Aigner T., von der Mark K., Bräuer R. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage. 1998 Jan;6(1):50–65. doi: 10.1053/joca.1997.0092. [DOI] [PubMed] [Google Scholar]
  25. Rosenberg K., Olsson H., Mörgelin M., Heinegård D. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem. 1998 Aug 7;273(32):20397–20403. doi: 10.1074/jbc.273.32.20397. [DOI] [PubMed] [Google Scholar]
  26. Thur J., Rosenberg K., Nitsche D. P., Pihlajamaa T., Ala-Kokko L., Heinegård D., Paulsson M., Maurer P. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J Biol Chem. 2000 Nov 17;276(9):6083–6092. doi: 10.1074/jbc.M009512200. [DOI] [PubMed] [Google Scholar]
  27. Xu C., Oyajobi B. O., Frazer A., Kozaci L. D., Russell R. G., Hollander A. P. Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures. Endocrinology. 1996 Aug;137(8):3557–3565. doi: 10.1210/endo.137.8.8754787. [DOI] [PubMed] [Google Scholar]
  28. von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES