Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 15;358(Pt 1):59–67. doi: 10.1042/0264-6021:3580059

Multiple adaptive mechanisms affect asparagine synthetase substrate availability in asparaginase-resistant MOLT-4 human leukaemia cells.

A M Aslanian 1, M S Kilberg 1
PMCID: PMC1222032  PMID: 11485552

Abstract

Childhood acute lymphoblastic leukaemia is treated by combination chemotherapy with a number of drugs, almost always including the enzyme L-asparaginase (ASNase). Although the initial remission rate is quite high, relapse and associated drug resistance remain a problem. In vitro studies have demonstrated an adaptive increase in asparagine synthetase (AS) expression in ASNase-resistant cells, which is believed to permit ASNase-resistant human leukaemia cells to survive in vivo. The present results, obtained with ASNase-sensitive and -resistant human MOLT-4 leukaemia cell lines, illustrate that several other adaptive processes occur to provide sufficient amounts of the AS substrates, aspartate and glutamine, required to support this increased enzymic activity. In both cell populations, aspartate is derived almost exclusively from intracellular sources, whereas the necessary glutamine arises from both intracellular and extracellular sources. Transport of glutamine into ASNase-resistant cells is significantly enhanced compared with the parental cells, whereas amino acid efflux (e.g. asparagine) is reduced. Most of the adaptive change for the amino acid transporters, Systems A, ASC and L, is rapidly (12 h) reversed following ASNase removal. The enzymic activity of glutamine synthetase is also enhanced in ASNase-resistant cells by a post-transcriptional mechanism. The results demonstrate that there are several sites of metabolic adaptation in ASNase-treated leukaemia cells that serve to promote the replenishment of both glutamine and asparagine.

Full Text

The Full Text of this article is available as a PDF (282.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asselin B. L., Ryan D., Frantz C. N., Bernal S. D., Leavitt P., Sallan S. E., Cohen H. J. In vitro and in vivo killing of acute lymphoblastic leukemia cells by L-asparaginase. Cancer Res. 1989 Aug 1;49(15):4363–4368. [PubMed] [Google Scholar]
  2. Broome J. D. Studies on the mechanism of tumor inhibition by L-asparaginase. Effects of the enzyme on asparagine levels in the blood, normal tissues, and 6C3HED lymphomas of mice: differences in asparagine formation and utilization in asparaginase-sensitive and -resistant lymphoma cells. J Exp Med. 1968 Jun 1;127(6):1055–1072. doi: 10.1084/jem.127.6.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bussolati O., Belletti S., Uggeri J., Gatti R., Orlandini G., Dall'Asta V., Gazzola G. C. Characterization of apoptotic phenomena induced by treatment with L-asparaginase in NIH3T3 cells. Exp Cell Res. 1995 Oct;220(2):283–291. doi: 10.1006/excr.1995.1317. [DOI] [PubMed] [Google Scholar]
  4. Christensen H. N., Handlogten M. E., Lam I., Tager H. S., Zand R. A bicyclic amino acid to improve discriminations among transport systems. J Biol Chem. 1969 Mar 25;244(6):1510–1520. [PubMed] [Google Scholar]
  5. Christensen H. N., Liang M., Archer E. G. A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids. J Biol Chem. 1967 Nov 25;242(22):5237–5246. [PubMed] [Google Scholar]
  6. Codegoni A. M., Biondi A., Conter V., Masera G., Rambaldi A., D'Incalci M. Human monocytic leukemia expresses low levels of asparagine synthase and is potentially sensitive to L-asparaginase. Leukemia. 1995 Feb;9(2):360–361. [PubMed] [Google Scholar]
  7. Cortes J. E., Kantarjian H. M. Acute lymphoblastic leukemia. A comprehensive review with emphasis on biology and therapy. Cancer. 1995 Dec 15;76(12):2393–2417. doi: 10.1002/1097-0142(19951215)76:12<2393::aid-cncr2820761203>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  8. Freeman T. L., Ngo H. Q., Mailliard M. E. Inhibition of system A amino acid transport and hepatocyte proliferation following partial hepatectomy in the rat. Hepatology. 1999 Aug;30(2):437–444. doi: 10.1002/hep.510300212. [DOI] [PubMed] [Google Scholar]
  9. Handlogten M. E., Kilberg M. S. Growth-dependent regulation of system A in SV40-transformed fetal rat hepatocytes. Am J Physiol. 1988 Sep;255(3 Pt 1):C261–C270. doi: 10.1152/ajpcell.1988.255.3.C261. [DOI] [PubMed] [Google Scholar]
  10. Hudson M. M., Dahl G. V., Kalwinsky D. K., Pui C. H. Methotrexate plus L-asparaginase. An active combination for children with acute nonlymphocytic leukemia. Cancer. 1990 Jun 15;65(12):2615–2618. doi: 10.1002/1097-0142(19900615)65:12<2615::aid-cncr2820651202>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  11. Hutson R. G., Kitoh T., Moraga Amador D. A., Cosic S., Schuster S. M., Kilberg M. S. Amino acid control of asparagine synthetase: relation to asparaginase resistance in human leukemia cells. Am J Physiol. 1997 May;272(5 Pt 1):C1691–C1699. doi: 10.1152/ajpcell.1997.272.5.C1691. [DOI] [PubMed] [Google Scholar]
  12. Jaffe N., Traggis D., Das L., Moloney W. C., Hann H. W., Kim B. S., Nair R. L-asparaginase in the treatment of neoplastic diseases in children. Cancer Res. 1971 Jul;31(7):942–949. [PubMed] [Google Scholar]
  13. Kaspers G. J., Pieters R., Van Zantwijk C. H., Van Wering E. R., Van Der Does-Van Den Berg A., Veerman A. J. Prednisolone resistance in childhood acute lymphoblastic leukemia: vitro-vivo correlations and cross-resistance to other drugs. Blood. 1998 Jul 1;92(1):259–266. [PubMed] [Google Scholar]
  14. Kaspers G. J., Veerman A. J., Pieters R., Van Zantwijk C. H., Smets L. A., Van Wering E. R., Van Der Does-Van Den Berg A. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood. 1997 Oct 1;90(7):2723–2729. [PubMed] [Google Scholar]
  15. Kilberg M. S., Stevens B. R., Novak D. A. Recent advances in mammalian amino acid transport. Annu Rev Nutr. 1993;13:137–165. doi: 10.1146/annurev.nu.13.070193.001033. [DOI] [PubMed] [Google Scholar]
  16. Kiriyama Y., Kubota M., Takimoto T., Kitoh T., Tanizawa A., Akiyama Y., Mikawa H. Biochemical characterization of U937 cells resistant to L-asparaginase: the role of asparagine synthetase. Leukemia. 1989 Apr;3(4):294–297. [PubMed] [Google Scholar]
  17. Labow B. I., Souba W. W., Abcouwer S. F. Glutamine synthetase expression in muscle is regulated by transcriptional and posttranscriptional mechanisms. Am J Physiol. 1999 Jun;276(6 Pt 1):E1136–E1145. doi: 10.1152/ajpendo.1999.276.6.E1136. [DOI] [PubMed] [Google Scholar]
  18. Larson R. A., Dodge R. K., Burns C. P., Lee E. J., Stone R. M., Schulman P., Duggan D., Davey F. R., Sobol R. E., Frankel S. R. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood. 1995 Apr 15;85(8):2025–2037. [PubMed] [Google Scholar]
  19. Lie-Venema H., Hakvoort T. B., van Hemert F. J., Moorman A. F., Lamers W. H. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. Prog Nucleic Acid Res Mol Biol. 1998;61:243–308. doi: 10.1016/s0079-6603(08)60829-6. [DOI] [PubMed] [Google Scholar]
  20. Malandro M. S., Kilberg M. S. Molecular biology of mammalian amino acid transporters. Annu Rev Biochem. 1996;65:305–336. doi: 10.1146/annurev.bi.65.070196.001513. [DOI] [PubMed] [Google Scholar]
  21. Miller H. K., Salser J. S., Balis M. E. Amino acid levels following L-asparagine amidohydrolase (EC.3.5.1.1) therapy. Cancer Res. 1969 Jan;29(1):183–187. [PubMed] [Google Scholar]
  22. Müller H. J., Boos J. Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998 Aug;28(2):97–113. doi: 10.1016/s1040-8428(98)00015-8. [DOI] [PubMed] [Google Scholar]
  23. Nandy P., Periclou A. P., Avramis V. I. The synergism of 6-mercaptopurine plus cytosine arabinoside followed by PEG-asparaginase in human leukemia cell lines (CCRF/CEM/0 and (CCRF/CEM/ara-C/7A) is due to increased cellular apoptosis. Anticancer Res. 1998 Mar-Apr;18(2A):727–737. [PubMed] [Google Scholar]
  24. Palacín M., Estévez R., Bertran J., Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998 Oct;78(4):969–1054. doi: 10.1152/physrev.1998.78.4.969. [DOI] [PubMed] [Google Scholar]
  25. Pieters R., Klumper E., Kaspers G. J., Veerman A. J. Everything you always wanted to know about cellular drug resistance in childhood acute lymphoblastic leukemia. Crit Rev Oncol Hematol. 1997 Jan;25(1):11–26. doi: 10.1016/s1040-8428(96)00223-5. [DOI] [PubMed] [Google Scholar]
  26. Prager M. D., Bachynsky N. Asparagine synthetase in asparaginase resistant and susceptible mouse lymphomas. Biochem Biophys Res Commun. 1968 Apr 5;31(1):43–47. doi: 10.1016/0006-291x(68)90028-4. [DOI] [PubMed] [Google Scholar]
  27. Preti A., Kantarjian H. M. Management of adult acute lymphocytic leukemia: present issues and key challenges. J Clin Oncol. 1994 Jun;12(6):1312–1322. doi: 10.1200/JCO.1994.12.6.1312. [DOI] [PubMed] [Google Scholar]
  28. Saier M. H., Jr, Daniels G. A., Boerner P., Lin J. Neutral amino acid transport systems in animal cells: potential targets of oncogene action and regulators of cellular growth. J Membr Biol. 1988 Aug;104(1):1–20. doi: 10.1007/BF01871898. [DOI] [PubMed] [Google Scholar]
  29. Shafqat S., Tamarappoo B. K., Kilberg M. S., Puranam R. S., McNamara J. O., Guadaño-Ferraz A., Fremeau R. T., Jr Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem. 1993 Jul 25;268(21):15351–15355. [PubMed] [Google Scholar]
  30. Smith R. J., Larson S., Stred S. E., Durschlag R. P. Regulation of glutamine synthetase and glutaminase activities in cultured skeletal muscle cells. J Cell Physiol. 1984 Aug;120(2):197–203. doi: 10.1002/jcp.1041200213. [DOI] [PubMed] [Google Scholar]
  31. Story M. D., Voehringer D. W., Stephens L. C., Meyn R. E. L-asparaginase kills lymphoma cells by apoptosis. Cancer Chemother Pharmacol. 1993;32(2):129–133. doi: 10.1007/BF00685615. [DOI] [PubMed] [Google Scholar]
  32. Sugawara M., Nakanishi T., Fei Y. J., Huang W., Ganapathy M. E., Leibach F. H., Ganapathy V. Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem. 2000 Jun 2;275(22):16473–16477. doi: 10.1074/jbc.C000205200. [DOI] [PubMed] [Google Scholar]
  33. Sutow W. W., Garcia F., Starling K. A., Williams T. E., Lane D. M., Gehan E. A. L-asparaginase therapy in children with advanced leukemia. The Southwest Cancer Chemotherapy Study Group. Cancer. 1971 Oct;28(4):819–824. doi: 10.1002/1097-0142(1971)28:4<819::aid-cncr2820280403>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  34. Tallal L., Tan C., Oettgen H., Wollner N., McCarthy M., Helson L., Burchenal J., Karnofsky D., Murphy M. L. E. coli L-asparaginase in the treatment of leukemia and solid tumors in 131 children. Cancer. 1970 Feb;25(2):306–320. doi: 10.1002/1097-0142(197002)25:2<306::aid-cncr2820250206>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  35. Ueno T., Ohtawa K., Mitsui K., Kodera Y., Hiroto M., Matsushima A., Inada Y., Nishimura H. Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia. 1997 Nov;11(11):1858–1861. doi: 10.1038/sj.leu.2400834. [DOI] [PubMed] [Google Scholar]
  36. Woodlock T. J., Segel G. B., Lichtman M. A. Phorbol ester restores L-system amino acid transport of B lymphocytes in chronic lymphocytic leukemia. J Clin Invest. 1988 Jan;81(1):32–38. doi: 10.1172/JCI113306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Worton K. S., Kerbel R. S., Andrulis I. L. Hypomethylation and reactivation of the asparagine synthetase gene induced by L-asparaginase and ethyl methanesulfonate. Cancer Res. 1991 Feb 1;51(3):985–989. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES