Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 15;358(Pt 1):101–110. doi: 10.1042/0264-6021:3580101

Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I.

N E Labrou 1, L V Mello 1, Y D Clonis 1
PMCID: PMC1222037  PMID: 11485557

Abstract

The isoenzyme glutathione S-transferase (GST) I from maize (Zea mays) was cloned and expressed in Escherichia coli, and its catalytic mechanism was investigated by site-directed mutagenesis and dynamic studies. The results showed that the enzyme promotes proton dissociation from the GSH thiol and creates a thiolate anion with high nucleophilic reactivity by lowering the pK(a) of the thiol from 8.7 to 6.2. Steady-state kinetics fit well to a rapid equilibrium, random sequential Bi Bi mechanism, with intrasubunit modulation between the GSH binding site (G-site) and the electrophile binding site (H-site). The rate-limiting step of the reaction is viscosity-dependent, and thermodynamic data suggest that product release is rate-limiting. Five residues of GST I (Ser(11), His(40), Lys(41), Gln(53) and Ser(67)), which are located in the G-site, were individually replaced with alanine and their structural and functional roles in the 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction were investigated. On the basis of steady-state kinetics, difference spectroscopy and limited proteolysis studies it is concluded that these residues: (1) contribute to the affinity of the G-site for GSH, as they are involved in side-chain interaction with GSH; (2) influence GSH thiol ionization, and thus its reactivity; (3) participate in k(cat) regulation by affecting the rate-limiting step of the reaction; and (4) in the cases of His(40), Lys(41) and Gln(53) play an important role in the structural integrity of, and probably in the flexibility of, the highly mobile short 3(10)-helical segment of alpha-helix 2 (residues 35-46), as shown by limited proteolysis experiments. These structural perturbations are probably transmitted to the H-site through changes in Phe(35) conformation. This accounts for the modulation of K(CDNB)(m) by His(40), Lys(41) and Gln(53), and also for the intrasubunit communication between the G- and H-sites. Computer simulations using CONCOORD were applied to maize GST I monomer and dimer structures, each with bound lactoylglutathione, and the results were analysed by the essential dynamics technique. Differences in dynamics were found between the monomer and the dimer simulations showing the importance of using the whole structure in dynamic analysis. The results obtained confirm that the short 3(10)-helical segment of alpha-helix 2 (residues 35-46) undergoes the most significant structural rearrangements. These rearrangements are discussed in terms of enzyme catalytic mechanism.

Full Text

The Full Text of this article is available as a PDF (219.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allardyce C. S., McDonagh P. D., Lian L. Y., Wolf C. R., Roberts G. C. The role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class glutathione S-transferases. Biochem J. 1999 Nov 1;343(Pt 3):525–531. [PMC free article] [PubMed] [Google Scholar]
  2. Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
  3. Armstrong R. N. Mechanistic imperatives for the evolution of glutathione transferases. Curr Opin Chem Biol. 1998 Oct;2(5):618–623. doi: 10.1016/s1367-5931(98)80093-8. [DOI] [PubMed] [Google Scholar]
  4. Armstrong R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997 Jan;10(1):2–18. doi: 10.1021/tx960072x. [DOI] [PubMed] [Google Scholar]
  5. Björnestedt R., Stenberg G., Widersten M., Board P. G., Sinning I., Jones T. A., Mannervik B. Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1-1. J Mol Biol. 1995 Apr 7;247(4):765–773. doi: 10.1016/s0022-2836(05)80154-8. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Caccuri A. M., Antonini G., Nicotra M., Battistoni A., Lo Bello M., Board P. G., Parker M. W., Ricci G. Catalytic mechanism and role of hydroxyl residues in the active site of theta class glutathione S-transferases. Investigation of Ser-9 and Tyr-113 in a glutathione S-transferase from the Australian sheep blowfly, Lucilia cuprina. J Biol Chem. 1997 Nov 21;272(47):29681–29686. doi: 10.1074/jbc.272.47.29681. [DOI] [PubMed] [Google Scholar]
  8. Caccuri A. M., Ascenzi P., Antonini G., Parker M. W., Oakley A. J., Chiessi E., Nuccetelli M., Battistoni A., Bellizia A., Ricci G. Structural flexibility modulates the activity of human glutathione transferase P1-1. Influence of a poor co-substrate on dynamics and kinetics of human glutathione transferase. J Biol Chem. 1996 Jul 5;271(27):16193–16198. doi: 10.1074/jbc.271.27.16193. [DOI] [PubMed] [Google Scholar]
  9. Caccuri A. M., Lo Bello M., Nuccetelli M., Nicotra M., Rossi P., Antonini G., Federici G., Ricci G. Proton release upon glutathione binding to glutathione transferase P1-1: kinetic analysis of a multistep glutathione binding process. Biochemistry. 1998 Mar 3;37(9):3028–3034. doi: 10.1021/bi971903g. [DOI] [PubMed] [Google Scholar]
  10. Chen W. J., Graminski G. F., Armstrong R. N. Dissection of the catalytic mechanism of isozyme 4-4 of glutathione S-transferase with alternative substrates. Biochemistry. 1988 Jan 26;27(2):647–654. doi: 10.1021/bi00402a023. [DOI] [PubMed] [Google Scholar]
  11. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  12. Edwards R., Dixon D. P., Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 2000 May;5(5):193–198. doi: 10.1016/s1360-1385(00)01601-0. [DOI] [PubMed] [Google Scholar]
  13. Fontana A., Zambonin M., Polverino de Laureto P., De Filippis V., Clementi A., Scaramella E. Probing the conformational state of apomyoglobin by limited proteolysis. J Mol Biol. 1997 Feb 21;266(2):223–230. doi: 10.1006/jmbi.1996.0787. [DOI] [PubMed] [Google Scholar]
  14. Grove G., Zarlengo R. P., Timmerman K. P., Li N. Q., Tam M. F., Tu C. P. Characterization and heterospecific expression of cDNA clones of genes in the maize GSH S-transferase multigene family. Nucleic Acids Res. 1988 Jan 25;16(2):425–438. doi: 10.1093/nar/16.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ichiye T., Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991;11(3):205–217. doi: 10.1002/prot.340110305. [DOI] [PubMed] [Google Scholar]
  16. Ivanetich K. M., Goold R. D., Sikakana C. N. Explanation of the non-hyperbolic kinetics of the glutathione S-transferases by the simplest steady-state random sequential Bi Bi mechanism. Biochem Pharmacol. 1990 Jun 15;39(12):1999–2004. doi: 10.1016/0006-2952(90)90621-q. [DOI] [PubMed] [Google Scholar]
  17. Jakobson I., Warholm M., Mannervik B. The binding of substrates and a product of the enzymatic reaction to glutathione S-transferase A. J Biol Chem. 1979 Aug 10;254(15):7085–7089. [PubMed] [Google Scholar]
  18. Jemth P., Mannervik B. Active site serine promotes stabilization of the reactive glutathione thiolate in rat glutathione transferase T2-2. Evidence against proposed sulfatase activity of the corresponding human enzyme. J Biol Chem. 2000 Mar 24;275(12):8618–8624. doi: 10.1074/jbc.275.12.8618. [DOI] [PubMed] [Google Scholar]
  19. Jemth P., Mannervik B. Fast product formation and slow product release are important features in a hysteretic reaction mechanism of glutathione transferase T2-2. Biochemistry. 1999 Aug 3;38(31):9982–9991. doi: 10.1021/bi983065b. [DOI] [PubMed] [Google Scholar]
  20. Johnson W. W., Liu S., Ji X., Gilliland G. L., Armstrong R. N. Tyrosine 115 participates both in chemical and physical steps of the catalytic mechanism of a glutathione S-transferase. J Biol Chem. 1993 Jun 5;268(16):11508–11511. [PubMed] [Google Scholar]
  21. Karshikoff A., Reinemer P., Huber R., Ladenstein R. Electrostatic evidence for the activation of the glutathione thiol by Tyr7 in pi-class glutathione transferases. Eur J Biochem. 1993 Aug 1;215(3):663–670. doi: 10.1111/j.1432-1033.1993.tb18077.x. [DOI] [PubMed] [Google Scholar]
  22. Kong K. H., Takasu K., Inoue H., Takahashi K. Tyrosine-7 in human class Pi glutathione S-transferase is important for lowering the pKa of the thiol group of glutathione in the enzyme-glutathione complex. Biochem Biophys Res Commun. 1992 Apr 15;184(1):194–197. doi: 10.1016/0006-291x(92)91177-r. [DOI] [PubMed] [Google Scholar]
  23. Labrou N. E., Rigden D. J. Active-site characterization of Candida boidinii formate dehydrogenase. Biochem J. 2001 Mar 1;354(Pt 2):455–463. doi: 10.1042/0264-6021:3540455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Labrou N. E., Rigden D. J., Clonis Y. D. Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis. Eur J Biochem. 2000 Nov;267(22):6657–6664. doi: 10.1046/j.1432-1327.2000.01761.x. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Liu S., Zhang P., Ji X., Johnson W. W., Gilliland G. L., Armstrong R. N. Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase. J Biol Chem. 1992 Mar 5;267(7):4296–4299. [PubMed] [Google Scholar]
  27. Lo Bello M., Battistoni A., Mazzetti A. P., Board P. G., Muramatsu M., Federici G., Ricci G. Site-directed mutagenesis of human glutathione transferase P1-1. Spectral, kinetic, and structural properties of Cys-47 and Lys-54 mutants. J Biol Chem. 1995 Jan 20;270(3):1249–1253. [PubMed] [Google Scholar]
  28. Lo Bello M., Oakley A. J., Battistoni A., Mazzetti A. P., Nuccetelli M., Mazzarese G., Rossjohn J., Parker M. W., Ricci G. Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme. Biochemistry. 1997 May 20;36(20):6207–6217. doi: 10.1021/bi962813z. [DOI] [PubMed] [Google Scholar]
  29. Loewenthal R., Sancho J., Fersht A. R. Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability. J Mol Biol. 1992 Apr 5;224(3):759–770. doi: 10.1016/0022-2836(92)90560-7. [DOI] [PubMed] [Google Scholar]
  30. Lu Y. P., Li Z. S., Rea P. A. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8243–8248. doi: 10.1073/pnas.94.15.8243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Neuefeind T., Huber R., Dasenbrock H., Prade L., Bieseler B. Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism. J Mol Biol. 1997 Dec 12;274(4):446–453. doi: 10.1006/jmbi.1997.1402. [DOI] [PubMed] [Google Scholar]
  32. Neuefeind T., Huber R., Reinemer P., Knäblein J., Prade L., Mann K., Bieseler B. Cloning, sequencing, crystallization and X-ray structure of glutathione S-transferase-III from Zea mays var. mutin: a leading enzyme in detoxification of maize herbicides. J Mol Biol. 1997 Dec 12;274(4):577–587. doi: 10.1006/jmbi.1997.1401. [DOI] [PubMed] [Google Scholar]
  33. Nieslanik B. S., Atkins W. M. The catalytic Tyr-9 of glutathione S-transferase A1-1 controls the dynamics of the C terminus. J Biol Chem. 2000 Jun 9;275(23):17447–17451. doi: 10.1074/jbc.M002083200. [DOI] [PubMed] [Google Scholar]
  34. Patskovsky Y. V., Patskovska L. N., Listowsky I. Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a. Biochemistry. 1999 Jan 26;38(4):1193–1202. doi: 10.1021/bi982164m. [DOI] [PubMed] [Google Scholar]
  35. Patskovsky Y. V., Patskovska L. N., Listowsky I. The enhanced affinity for thiolate anion and activation of enzyme-bound glutathione is governed by an arginine residue of human Mu class glutathione S-transferases. J Biol Chem. 2000 Feb 4;275(5):3296–3304. doi: 10.1074/jbc.275.5.3296. [DOI] [PubMed] [Google Scholar]
  36. Pemble S. E., Taylor J. B. An evolutionary perspective on glutathione transferases inferred from class-theta glutathione transferase cDNA sequences. Biochem J. 1992 Nov 1;287(Pt 3):957–963. doi: 10.1042/bj2870957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Phillips M. F., Mantle T. J. The initial-rate kinetics of mouse glutathione S-transferase YfYf. Evidence for an allosteric site for ethacrynic acid. Biochem J. 1991 May 1;275(Pt 3):703–709. doi: 10.1042/bj2750703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Prade L., Huber R., Bieseler B. Structures of herbicides in complex with their detoxifying enzyme glutathione S-transferase - explanations for the selectivity of the enzyme in plants. Structure. 1998 Nov 15;6(11):1445–1452. doi: 10.1016/s0969-2126(98)00143-9. [DOI] [PubMed] [Google Scholar]
  39. Reinemer P., Dirr H. W., Ladenstein R., Huber R., Lo Bello M., Federici G., Parker M. W. Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol. 1992 Sep 5;227(1):214–226. doi: 10.1016/0022-2836(92)90692-d. [DOI] [PubMed] [Google Scholar]
  40. Reinemer P., Prade L., Hof P., Neuefeind T., Huber R., Zettl R., Palme K., Schell J., Koelln I., Bartunik H. D. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J Mol Biol. 1996 Jan 19;255(2):289–309. doi: 10.1006/jmbi.1996.0024. [DOI] [PubMed] [Google Scholar]
  41. Ricci G., Caccuri A. M., Lo Bello M., Rosato N., Mei G., Nicotra M., Chiessi E., Mazzetti A. P., Federici G. Structural flexibility modulates the activity of human glutathione transferase P1-1. Role of helix 2 flexibility in the catalytic mechanism. J Biol Chem. 1996 Jul 5;271(27):16187–16192. doi: 10.1074/jbc.271.27.16187. [DOI] [PubMed] [Google Scholar]
  42. Roxas V. P., Smith R. K., Jr, Allen E. R., Allen R. D. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol. 1997 Oct;15(10):988–991. doi: 10.1038/nbt1097-988. [DOI] [PubMed] [Google Scholar]
  43. Sampson N. S., Knowles J. R. Segmental motion in catalysis: investigation of a hydrogen bond critical for loop closure in the reaction of triosephosphate isomerase. Biochemistry. 1992 Sep 15;31(36):8488–8494. doi: 10.1021/bi00151a015. [DOI] [PubMed] [Google Scholar]
  44. Shoemaker K. R., Fairman R., Schultz D. A., Robertson A. D., York E. J., Stewart J. M., Baldwin R. L. Side-chain interactions in the C-peptide helix: Phe 8 ... His 12+. Biopolymers. 1990 Jan;29(1):1–11. doi: 10.1002/bip.360290104. [DOI] [PubMed] [Google Scholar]
  45. Stella L., Di Iorio E. E., Nicotra M., Ricci G. Molecular dynamics simulations of human glutathione transferase P1-1: conformational fluctuations of the apo-structure. Proteins. 1999 Oct 1;37(1):10–19. doi: 10.1002/(sici)1097-0134(19991001)37:1<10::aid-prot2>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  46. Stenberg G., Board P. G., Mannervik B. Mutation of an evolutionarily conserved tyrosine residue in the active site of a human class Alpha glutathione transferase. FEBS Lett. 1991 Nov 18;293(1-2):153–155. doi: 10.1016/0014-5793(91)81174-7. [DOI] [PubMed] [Google Scholar]
  47. Tang S. S., Chang G. G. Steady-state kinetics and chemical mechanism of octopus hepatopancreatic glutathione transferase. Biochem J. 1995 Jul 1;309(Pt 1):347–353. doi: 10.1042/bj3090347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Widersten M., Kolm R. H., Björnestedt R., Mannervik B. Contribution of five amino acid residues in the glutathione-binding site to the function of human glutathione transferase P1-1. Biochem J. 1992 Jul 15;285(Pt 2):377–381. doi: 10.1042/bj2850377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. de Groot B. L., Vriend G., Berendsen H. J. Conformational changes in the chaperonin GroEL: new insights into the allosteric mechanism. J Mol Biol. 1999 Mar 5;286(4):1241–1249. doi: 10.1006/jmbi.1998.2568. [DOI] [PubMed] [Google Scholar]
  50. de Groot B. L., van Aalten D. M., Scheek R. M., Amadei A., Vriend G., Berendsen H. J. Prediction of protein conformational freedom from distance constraints. Proteins. 1997 Oct;29(2):240–251. doi: 10.1002/(sici)1097-0134(199710)29:2<240::aid-prot11>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES