Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 15;358(Pt 1):111–118. doi: 10.1042/0264-6021:3580111

Structural and kinetic modifications of aldose reductase by S-nitrosothiols.

S Srivastava 1, B L Dixit 1, K V Ramana 1, A Chandra 1, D Chandra 1, A Zacarias 1, J M Petrash 1, A Bhatnagar 1, S K Srivastava 1
PMCID: PMC1222038  PMID: 11485558

Abstract

Modification of aldose reductase (AR) by the nitrosothiols S-nitroso-N-acetyl penicillamine (SNAP) and N-(beta-glucopyranosyl)-N(2)-acetyl-S-nitrosopenicillamide (glyco-SNAP) resulted in a 3-7-fold increase in its k(cat) and a 25-40-fold increase in its K(m) for glyceraldehyde. In comparison with the native protein, the modified enzyme was less sensitive to inhibition by sorbinil and was not activated by SO(2-)(4) anions. The active-site residue, Cys-298, was identified as the main site of modification, because the site-directed mutant in which Cys-298 was replaced by serine was insensitive to glyco-SNAP. The extent of modification was not affected by P(i) or O(2), indicating that it was not due to spontaneous release of nitric oxide (NO) by the nitrosothiols. Electrospray ionization MS revealed that the modification reaction proceeds via the formation of an N-hydroxysulphenamide-like adduct between glyco-SNAP and AR. In time, the adduct dissociates into either nitrosated AR (AR-NO) or a mixed disulphide between AR and glyco-N-acetylpenicillamine (AR-S-S-X). Removal of the mixed-disulphide form of the protein by lectin-column chromatography enriched the preparation in the high-K(m)-high-k(cat) form of the enzyme, suggesting that the kinetic changes are due to the formation of AR-NO, and that the AR-S-S-X form of the enzyme is catalytically inactive. Modification of AR by the non-thiol NO donor diethylamine NONOate (DEANO) increased enzyme activity and resulted in the formation of AR-NO. However, no adducts between AR and DEANO were formed. These results show that nitrosothiols cause multiple structural and functional changes in AR. Our observations also suggest the general possibility that transnitrosation reactions can generate both nitrosated and thiolated products, leading to non-unique changes in protein structure and function.

Full Text

The Full Text of this article is available as a PDF (169.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhatnagar A., Liu S. Q., Ueno N., Chakrabarti B., Srivastava S. K. Human placental aldose reductase: role of Cys-298 in substrate and inhibitor binding. Biochim Biophys Acta. 1994 Apr 13;1205(2):207–214. doi: 10.1016/0167-4838(94)90235-6. [DOI] [PubMed] [Google Scholar]
  2. Bhatnagar A., Srivastava S. K. Aldose reductase: congenial and injurious profiles of an enigmatic enzyme. Biochem Med Metab Biol. 1992 Oct;48(2):91–121. doi: 10.1016/0885-4505(92)90055-4. [DOI] [PubMed] [Google Scholar]
  3. Brüne B., Mohr S., Messmer U. K. Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways. Rev Physiol Biochem Pharmacol. 1996;127:1–30. doi: 10.1007/BFb0048263. [DOI] [PubMed] [Google Scholar]
  4. Chandra A., Srivastava S., Petrash J. M., Bhatnagar A., Srivastava S. K. Modification of aldose reductase by S-nitrosoglutathione. Biochemistry. 1997 Dec 16;36(50):15801–15809. doi: 10.1021/bi9714722. [DOI] [PubMed] [Google Scholar]
  5. Donohue P. J., Alberts G. F., Hampton B. S., Winkles J. A. A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase. J Biol Chem. 1994 Mar 18;269(11):8604–8609. [PubMed] [Google Scholar]
  6. Grimshaw C. E., Lai C. J. Oxidized aldose reductase: in vivo factor not in vitro artifact. Arch Biochem Biophys. 1996 Mar 1;327(1):89–97. doi: 10.1006/abbi.1996.0096. [DOI] [PubMed] [Google Scholar]
  7. Hogg N. The kinetics of S-transnitrosation--a reversible second-order reaction. Anal Biochem. 1999 Aug 1;272(2):257–262. doi: 10.1006/abio.1999.4199. [DOI] [PubMed] [Google Scholar]
  8. Jacquin-Becker C., Labourdette G. Regulation of aldose reductase expression in rat astrocytes in culture. Glia. 1997 Jun;20(2):135–144. doi: 10.1002/(sici)1098-1136(199706)20:2<135::aid-glia5>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  9. Ji Y., Akerboom T. P., Sies H., Thomas J. A. S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch Biochem Biophys. 1999 Feb 1;362(1):67–78. doi: 10.1006/abbi.1998.1013. [DOI] [PubMed] [Google Scholar]
  10. Kharitonov V. G., Sundquist A. R., Sharma V. S. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem. 1995 Nov 24;270(47):28158–28164. doi: 10.1074/jbc.270.47.28158. [DOI] [PubMed] [Google Scholar]
  11. Kowaluk E. A., Fung H. L. Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols. J Pharmacol Exp Ther. 1990 Dec;255(3):1256–1264. [PubMed] [Google Scholar]
  12. Laeng P., Bouillon P., Taupenot L., Labourdette G. Long-term induction of an aldose reductase protein by basic fibroblast growth factor in rat astrocytes in vitro. Electrophoresis. 1995 Jul;16(7):1240–1250. doi: 10.1002/elps.11501601205. [DOI] [PubMed] [Google Scholar]
  13. Liu S. Q., Bhatnagar A., Ansari N. H., Srivastava S. K. Identification of the reactive cysteine residue in human placenta aldose reductase. Biochim Biophys Acta. 1993 Aug 7;1164(3):268–272. doi: 10.1016/0167-4838(93)90258-s. [DOI] [PubMed] [Google Scholar]
  14. Liu S. Q., Bhatnagar A., Srivastava S. K. Carboxymethylation-induced activation of bovine lens aldose reductase. Biochim Biophys Acta. 1992 Apr 17;1120(3):329–336. doi: 10.1016/0167-4838(92)90256-d. [DOI] [PubMed] [Google Scholar]
  15. Mohr S., Hallak H., de Boitte A., Lapetina E. G., Brüne B. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1999 Apr 2;274(14):9427–9430. doi: 10.1074/jbc.274.14.9427. [DOI] [PubMed] [Google Scholar]
  16. Padgett C. M., Whorton A. R. Regulation of cellular thiol redox status by nitric oxide. Cell Biochem Biophys. 1995;27(3):157–177. doi: 10.1007/BF02738108. [DOI] [PubMed] [Google Scholar]
  17. Pavlov A. R., Vartanov S. S., Iaropolov A. I. Reguliatsiia aktivnosti al'dozoreduktaz. Vliianie éffektorov na obratimuiu izomerizatsiiu fermenta. Biokhimiia. 1991 Nov;56(11):1999–2015. [PubMed] [Google Scholar]
  18. Percival M. D., Ouellet M., Campagnolo C., Claveau D., Li C. Inhibition of cathepsin K by nitric oxide donors: evidence for the formation of mixed disulfides and a sulfenic acid. Biochemistry. 1999 Oct 12;38(41):13574–13583. doi: 10.1021/bi991028u. [DOI] [PubMed] [Google Scholar]
  19. Petrash J. M., Harter T. M., Devine C. S., Olins P. O., Bhatnagar A., Liu S., Srivastava S. K. Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. J Biol Chem. 1992 Dec 5;267(34):24833–24840. [PubMed] [Google Scholar]
  20. Singh S. P., Wishnok J. S., Keshive M., Deen W. M., Tannenbaum S. R. The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14428–14433. doi: 10.1073/pnas.93.25.14428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Srivastava S. K., Ansari N. H., Bhatnagar A., Hair G., Liu S., Das B. Activation of aldose reductase by nonenzymatic glycosylation. Prog Clin Biol Res. 1989;304:171–184. [PubMed] [Google Scholar]
  22. Srivastava S. K., Hair G. A., Das B. Activated and unactivated forms of human erythrocyte aldose reductase. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7222–7226. doi: 10.1073/pnas.82.21.7222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Srivastava S., Chandra A., Bhatnagar A., Srivastava S. K., Ansari N. H. Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem Biophys Res Commun. 1995 Dec 26;217(3):741–746. doi: 10.1006/bbrc.1995.2835. [DOI] [PubMed] [Google Scholar]
  24. Srivastava S., Watowich S. J., Petrash J. M., Srivastava S. K., Bhatnagar A. Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry. 1999 Jan 5;38(1):42–54. doi: 10.1021/bi981794l. [DOI] [PubMed] [Google Scholar]
  25. Vander Jagt D. L., Robinson B., Taylor K. K., Hunsaker L. A. Aldose reductase from human skeletal and heart muscle. Interconvertible forms related by thiol-disulfide exchange. J Biol Chem. 1990 Dec 5;265(34):20982–20987. [PubMed] [Google Scholar]
  26. Wilson D. K., Bohren K. M., Gabbay K. H., Quiocho F. A. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science. 1992 Jul 3;257(5066):81–84. doi: 10.1126/science.1621098. [DOI] [PubMed] [Google Scholar]
  27. Wink D. A., Hanbauer I., Krishna M. C., DeGraff W., Gamson J., Mitchell J. B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9813–9817. doi: 10.1073/pnas.90.21.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yabe-Nishimura C. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev. 1998 Mar;50(1):21–33. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES