Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 15;358(Pt 1):147–155. doi: 10.1042/0264-6021:3580147

Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function.

D Gincel 1, H Zaid 1, V Shoshan-Barmatz 1
PMCID: PMC1222042  PMID: 11485562

Abstract

Mitochondria play a central role in energy metabolism, Ca(2+) signalling, aging and cell death. To control cytosolic or mitochondrial Ca(2+) concentration, mitochondria possess several Ca(2+)-transport systems across the inner membrane. However, the pathway for Ca(2+) crossing the outer membrane has not been directly addressed. We report that purified voltage-dependent anion channel (VDAC) reconstituted into lipid bilayers or liposomes is highly permeable to Ca(2+). VDAC contains Ca(2+)-binding sites that bind Ruthenium Red (RuR), La(3+) and that RuR completely closed VDACs in single or multichannel experiments. Energized, freshly prepared mitochondria accumulate Ca(2+) (500-700 nmol/mg of protein), and subsequently released it. The release of Ca(2+) is accompanied by cyclosporin A-inhibited swelling, suggesting activation of permeability transition pore (PTP). RuR and ruthenium amine binuclear complex, when added to mitochondria after Ca(2+) accumulation has reached a maximal level and before PTP is activated, prevented the release of Ca(2+) and the accompanied mitochondrial swelling. RuR also prevented PTP opening promoted by atractyloside, an adenine nucleotide translocase inhibitor. These results suggest that VDAC, located in the mitochondrial outer membrane, controls Ca(2+) transport into and from the mitochondria, and that the inhibition of Ca(2+) uptake by RuR and La(3+) may result from their interaction with VDAC Ca(2+)-binding sites. Inhibition of PTP opening or assembly by RuR and ruthenium amine binuclear complex suggest the involvement of VDAC in PTP activity and/or regulation. The permeability of VDAC to Ca(2+) and its binding of Ca(2+), suggest that VDAC has a role in regulation of the mitochondrial Ca(2+) homoeostasis.

Full Text

The Full Text of this article is available as a PDF (236.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz R. Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta. 1994 Jun 29;1197(2):167–196. doi: 10.1016/0304-4157(94)90004-3. [DOI] [PubMed] [Google Scholar]
  2. Bernardi P., Petronilli V. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr. 1996 Apr;28(2):131–138. doi: 10.1007/BF02110643. [DOI] [PubMed] [Google Scholar]
  3. Bernardi P., Veronese P., Petronilli V. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem. 1993 Jan 15;268(2):1005–1010. [PubMed] [Google Scholar]
  4. Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
  5. Beutner G., Ruck A., Riede B., Welte W., Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett. 1996 Nov 4;396(2-3):189–195. doi: 10.1016/0014-5793(96)01092-7. [DOI] [PubMed] [Google Scholar]
  6. Brustovetsky N., Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry. 1996 Jul 2;35(26):8483–8488. doi: 10.1021/bi960833v. [DOI] [PubMed] [Google Scholar]
  7. Báthori G., Fonyó A., Ligeti E. Trace amounts of Triton X-100 modify the inhibitor sensitivity of the mitochondrial porin. Biochim Biophys Acta. 1995 Mar 22;1234(2):249–254. doi: 10.1016/0005-2736(94)00295-z. [DOI] [PubMed] [Google Scholar]
  8. Charuk J. H., Pirraglia C. A., Reithmeier R. A. Interaction of ruthenium red with Ca2(+)-binding proteins. Anal Biochem. 1990 Jul;188(1):123–131. doi: 10.1016/0003-2697(90)90539-l. [DOI] [PubMed] [Google Scholar]
  9. Chen S. R., MacLennan D. H. Identification of calmodulin-, Ca(2+)-, and ruthenium red-binding domains in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1994 Sep 9;269(36):22698–22704. [PubMed] [Google Scholar]
  10. Corbalan-Garcia S., Teruel J. A., Gomez-Fernandez J. C. Characterization of ruthenium red-binding sites of the Ca(2+)-ATPase from sarcoplasmic reticulum and their interaction with Ca(2+)-binding sites. Biochem J. 1992 Nov 1;287(Pt 3):767–774. doi: 10.1042/bj2870767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999 Jul 15;341(Pt 2):233–249. [PMC free article] [PubMed] [Google Scholar]
  12. De Pinto V., Benz R., Palmieri F. Interaction of non-classical detergents with the mitochondrial porin. A new purification procedure and characterization of the pore-forming unit. Eur J Biochem. 1989 Jul 15;183(1):179–187. doi: 10.1111/j.1432-1033.1989.tb14911.x. [DOI] [PubMed] [Google Scholar]
  13. De Pinto V., al Jamal J. A., Palmieri F. Location of the dicyclohexylcarbodiimide-reactive glutamate residue in the bovine heart mitochondrial porin. J Biol Chem. 1993 Jun 15;268(17):12977–12982. [PubMed] [Google Scholar]
  14. Di Lisa F., Gambassi G., Spurgeon H., Hansford R. G. Intramitochondrial free calcium in cardiac myocytes in relation to dehydrogenase activation. Cardiovasc Res. 1993 Oct;27(10):1840–1844. doi: 10.1093/cvr/27.10.1840. [DOI] [PubMed] [Google Scholar]
  15. Gincel D., Silberberg S. D., Shoshan-Barmatz V. Modulation of the voltage-dependent anion channel (VDAC) by glutamate. J Bioenerg Biomembr. 2000 Dec;32(6):571–583. doi: 10.1023/a:1005670527340. [DOI] [PubMed] [Google Scholar]
  16. Gregersen H. J., Heizmann C. W., Kaegi U., Celio M. R. Ca2(+)-dependent mobility shift of parvalbumin in one- and two-dimensional gel-electrophoresis. Adv Exp Med Biol. 1990;269:89–91. doi: 10.1007/978-1-4684-5754-4_13. [DOI] [PubMed] [Google Scholar]
  17. Gunter T. E., Buntinas L., Sparagna G. C., Gunter K. K. The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):5–15. doi: 10.1016/s0005-2728(98)00117-0. [DOI] [PubMed] [Google Scholar]
  18. Gunter T. E., Gunter K. K., Sheu S. S., Gavin C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994 Aug;267(2 Pt 1):C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313. [DOI] [PubMed] [Google Scholar]
  19. Hadad N., Zable A. C., Abramson J. J., Shoshan-Barmatz V. Ca2+ binding sites of the ryanodine receptor/Ca2+ release channel of sarcoplasmic reticulum. Low affinity binding site(s) as probed by terbium fluorescence. J Biol Chem. 1994 Oct 7;269(40):24864–24869. [PubMed] [Google Scholar]
  20. Halestrap A. P. The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp. 1999;66:181–203. doi: 10.1042/bss0660181. [DOI] [PubMed] [Google Scholar]
  21. Halestrap A. P. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J. 1987 May 15;244(1):159–164. doi: 10.1042/bj2440159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Haworth R. A., Hunter D. R. Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. J Membr Biol. 1980 Jun 15;54(3):231–236. doi: 10.1007/BF01870239. [DOI] [PubMed] [Google Scholar]
  23. Hodge T., Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol. 1997 Jun 1;157(3):271–279. doi: 10.1007/s002329900235. [DOI] [PubMed] [Google Scholar]
  24. Ichas F., Mazat J. P. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):33–50. doi: 10.1016/s0005-2728(98)00119-4. [DOI] [PubMed] [Google Scholar]
  25. Johnson S. A time and money saver? Cost comparison of i.v. therapy with and without Pall 96 filters. Prof Nurse. 1994 Nov;10(2):94–96. [PubMed] [Google Scholar]
  26. Kruman I. I., Mattson M. P. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem. 1999 Feb;72(2):529–540. doi: 10.1046/j.1471-4159.1999.0720529.x. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  29. Lemasters J. J., Qian T., Bradham C. A., Brenner D. A., Cascio W. E., Trost L. C., Nishimura Y., Nieminen A. L., Herman B. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr. 1999 Aug;31(4):305–319. doi: 10.1023/a:1005419617371. [DOI] [PubMed] [Google Scholar]
  30. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
  31. Mannella C. A. Minireview: on the structure and gating mechanism of the mitochondrial channel, VDAC. J Bioenerg Biomembr. 1997 Dec;29(6):525–531. doi: 10.1023/a:1022489832594. [DOI] [PubMed] [Google Scholar]
  32. Marzo I., Brenner C., Zamzami N., Susin S. A., Beutner G., Brdiczka D., Rémy R., Xie Z. H., Reed J. C., Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261–1271. doi: 10.1084/jem.187.8.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McConkey D. J., Orrenius S. The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun. 1997 Oct 20;239(2):357–366. doi: 10.1006/bbrc.1997.7409. [DOI] [PubMed] [Google Scholar]
  34. Mészáros L. G., Volpe P. Caffeine- and ryanodine-sensitive Ca2+ stores of canine cerebrum and cerebellum neurons. Am J Physiol. 1991 Dec;261(6 Pt 1):C1048–C1054. doi: 10.1152/ajpcell.1991.261.6.C1048. [DOI] [PubMed] [Google Scholar]
  35. Novgorodov S. A., Gudz T. I., Brierley G. P., Pfeiffer D. R. Magnesium ion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin A and ADP. Arch Biochem Biophys. 1994 Jun;311(2):219–228. doi: 10.1006/abbi.1994.1230. [DOI] [PubMed] [Google Scholar]
  36. Perez Velazquez J. L., Frantseva M. V., Huzar D. V., Carlen P. L. Mitochondrial porin required for ischemia-induced mitochondrial dysfunction and neuronal damage. Neuroscience. 2000;97(2):363–369. doi: 10.1016/s0306-4522(99)00569-2. [DOI] [PubMed] [Google Scholar]
  37. Petit P. X., Susin S. A., Zamzami N., Mignotte B., Kroemer G. Mitochondria and programmed cell death: back to the future. FEBS Lett. 1996 Oct 28;396(1):7–13. doi: 10.1016/0014-5793(96)00988-x. [DOI] [PubMed] [Google Scholar]
  38. Poyton R. O., McEwen J. E. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem. 1996;65:563–607. doi: 10.1146/annurev.bi.65.070196.003023. [DOI] [PubMed] [Google Scholar]
  39. Reed K. C., Bygrave F. L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974 May;140(2):143–155. doi: 10.1042/bj1400143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rizzuto R., Brini M., Murgia M., Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993 Oct 29;262(5134):744–747. doi: 10.1126/science.8235595. [DOI] [PubMed] [Google Scholar]
  41. Robb-Gaspers L. D., Rutter G. A., Burnett P., Hajnóczky G., Denton R. M., Thomas A. P. Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):17–32. doi: 10.1016/s0005-2728(98)00118-2. [DOI] [PubMed] [Google Scholar]
  42. Sasaki T., Naka M., Nakamura F., Tanaka T. Ruthenium red inhibits the binding of calcium to calmodulin required for enzyme activation. J Biol Chem. 1992 Oct 25;267(30):21518–21523. [PubMed] [Google Scholar]
  43. Schein S. J., Colombini M., Finkelstein A. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol. 1976 Dec 28;30(2):99–120. doi: 10.1007/BF01869662. [DOI] [PubMed] [Google Scholar]
  44. Shafir I., Feng W., Shoshan-Barmatz V. Dicyclohexylcarbodiimide interaction with the voltage-dependent anion channel from sarcoplasmic reticulum. Eur J Biochem. 1998 May 1;253(3):627–636. doi: 10.1046/j.1432-1327.1998.2530627.x. [DOI] [PubMed] [Google Scholar]
  45. Shimizu S., Ide T., Yanagida T., Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem. 2000 Apr 21;275(16):12321–12325. doi: 10.1074/jbc.275.16.12321. [DOI] [PubMed] [Google Scholar]
  46. Shimizu S., Konishi A., Kodama T., Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3100–3105. doi: 10.1073/pnas.97.7.3100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shimizu S., Narita M., Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999 Jun 3;399(6735):483–487. doi: 10.1038/20959. [DOI] [PubMed] [Google Scholar]
  48. Shoshan-Barmatz V., Hadad N., Feng W., Shafir I., Orr I., Varsanyi M., Heilmeyer L. M. VDAC/porin is present in sarcoplasmic reticulum from skeletal muscle. FEBS Lett. 1996 May 20;386(2-3):205–210. doi: 10.1016/0014-5793(96)00442-5. [DOI] [PubMed] [Google Scholar]
  49. Siadat S., Reymann S., Horn A., Thinnes F. P. Studies on human porin XVIII: the multicompartment effector ruthenium red reduces the voltage dependence of human VDAC in planar lipid bilayers. Mol Genet Metab. 1998 Nov;65(3):246–249. doi: 10.1006/mgme.1998.2764. [DOI] [PubMed] [Google Scholar]
  50. Sparagna G. C., Gunter K. K., Sheu S. S., Gunter T. E. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem. 1995 Nov 17;270(46):27510–27515. doi: 10.1074/jbc.270.46.27510. [DOI] [PubMed] [Google Scholar]
  51. Szabó I., De Pinto V., Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett. 1993 Sep 13;330(2):206–210. doi: 10.1016/0014-5793(93)80274-x. [DOI] [PubMed] [Google Scholar]
  52. Szabó I., Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett. 1993 Sep 13;330(2):201–205. doi: 10.1016/0014-5793(93)80273-w. [DOI] [PubMed] [Google Scholar]
  53. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Vander Heiden M. G., Chandel N. S., Li X. X., Schumacker P. T., Colombini M., Thompson C. B. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4666–4671. doi: 10.1073/pnas.090082297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ying W. L., Emerson J., Clarke M. J., Sanadi D. R. Inhibition of mitochondrial calcium ion transport by an oxo-bridged dinuclear ruthenium ammine complex. Biochemistry. 1991 May 21;30(20):4949–4952. doi: 10.1021/bi00234a016. [DOI] [PubMed] [Google Scholar]
  56. Zazueta C., Zafra G., Vera G., Sánchez C., Chávez E. Advances in the purification of the mitochondrial Ca2+ uniporter using the labeled inhibitor 103Ru360. J Bioenerg Biomembr. 1998 Oct;30(5):489–498. doi: 10.1023/a:1020546331217. [DOI] [PubMed] [Google Scholar]
  57. Zhang D. W., Colombini M. Group IIIA-metal hydroxides indirectly neutralize the voltage sensor of the voltage-dependent mitochondrial channel, VDAC, by interacting with a dynamic binding site. Biochim Biophys Acta. 1990 Jun 27;1025(2):127–134. doi: 10.1016/0005-2736(90)90089-7. [DOI] [PubMed] [Google Scholar]
  58. Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES