Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 15;358(Pt 1):157–163. doi: 10.1042/0264-6021:3580157

Elongated dermatan sulphate in post-inflammatory healing skin distributes among collagen fibrils separated by enlarged interfibrillar gaps.

K Kuwaba 1, M Kobayashi 1, Y Nomura 1, S Irie 1, Y Koyama 1
PMCID: PMC1222043  PMID: 11485563

Abstract

It has been reported that the disaccharide composition of dermatan sulphate shows transient changes after epicutaneous application of the hapten 2,4-dinitrofluorobenzene to mouse skin, and that these changes are most conspicuous in healing skin on day 15 after chemical insult [Kuwaba, Nomura, Irie and Koyama (1999) J. Dermatol. Sci. 19, 23-30]. In the present study it was found that the molecular size of dermatan sulphate was increased on day 15 after hapten application. The molecular size of decorin increased in healing skin, whereas the size of dermatan-sulphate-depleted core protein did not increase. The length and localization of decorin dermatan sulphate were investigated by electron microscopy. Dermatan sulphate filaments oriented orthogonally to collagen fibrils were longer in healing skin than in control skin. In control skin, dermatan sulphate filaments were found among tightly packed collagen fibrils. In contrast, the interfibrillar gaps between each collagen fibril were enlarged in healing skin; elongated dermatan sulphate filaments extended from the surface of collagen fibrils across the enlarged gap. These results suggest that the increase in molecular size of decorin dermatan sulphate is important in organizing collagen fibrils separated by enlarged interfibrillar gaps in healing skin.

Full Text

The Full Text of this article is available as a PDF (278.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassols A., Massagué J. Transforming growth factor beta regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J Biol Chem. 1988 Feb 25;263(6):3039–3045. [PubMed] [Google Scholar]
  2. Choi H. U., Johnson T. L., Pal S., Tang L. H., Rosenberg L., Neame P. J. Characterization of the dermatan sulfate proteoglycans, DS-PGI and DS-PGII, from bovine articular cartilage and skin isolated by octyl-sepharose chromatography. J Biol Chem. 1989 Feb 15;264(5):2876–2884. [PubMed] [Google Scholar]
  3. Danielson K. G., Baribault H., Holmes D. F., Graham H., Kadler K. E., Iozzo R. V. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997 Feb 10;136(3):729–743. doi: 10.1083/jcb.136.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fellini S. A., Pacifici M., Holtzer H. Changes in the sulfated proteoglycans synthesized by "aging" chondrocytes. II. Organ-cultured vertebral columns. J Biol Chem. 1981 Jan 25;256(2):1038–1043. [PubMed] [Google Scholar]
  5. Kischer C. W. Collagen and dermal patterns in the hypertrophic scar. Anat Rec. 1974 May;179(1):137–145. doi: 10.1002/ar.1091790111. [DOI] [PubMed] [Google Scholar]
  6. Koyama Y., Norose K., Kusubata M., Irie S., Kusakabe M. Differential expression of tenascin in the skin during hapten-induced dermatitis. Histochem Cell Biol. 1996 Sep;106(3):263–273. doi: 10.1007/BF02473236. [DOI] [PubMed] [Google Scholar]
  7. Kuwaba K., Nomura Y., Irie S., Koyama Y. Temporal changes in disaccharide composition of dermatan sulfate in the skin after epicutaneous application of hapten. J Dermatol Sci. 1999 Jan;19(1):23–30. doi: 10.1016/s0923-1811(98)00044-9. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Linares H. A., Kischer C. W., Dobrkovsky M., Larson D. L. The histiotypic organization of the hypertrophic scar in humans. J Invest Dermatol. 1972 Oct;59(4):323–331. doi: 10.1111/1523-1747.ep12627386. [DOI] [PubMed] [Google Scholar]
  10. Lyon M., Deakin J. A., Rahmoune H., Fernig D. G., Nakamura T., Gallagher J. T. Hepatocyte growth factor/scatter factor binds with high affinity to dermatan sulfate. J Biol Chem. 1998 Jan 2;273(1):271–278. doi: 10.1074/jbc.273.1.271. [DOI] [PubMed] [Google Scholar]
  11. Maimone M. M., Tollefsen D. M. Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity. J Biol Chem. 1990 Oct 25;265(30):18263–18271. [PubMed] [Google Scholar]
  12. Mitchell D., Hardingham T. The control of chondroitin sulphate biosynthesis and its influence on the structure of cartilage proteoglycans. Biochem J. 1982 Feb 15;202(2):387–395. doi: 10.1042/bj2020387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Penc S. F., Pomahac B., Winkler T., Dorschner R. A., Eriksson E., Herndon M., Gallo R. L. Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function. J Biol Chem. 1998 Oct 23;273(43):28116–28121. doi: 10.1074/jbc.273.43.28116. [DOI] [PubMed] [Google Scholar]
  14. Sayani K., Dodd C. M., Nedelec B., Shen Y. J., Ghahary A., Tredget E. E., Scott P. G. Delayed appearance of decorin in healing burn scars. Histopathology. 2000 Mar;36(3):262–272. doi: 10.1046/j.1365-2559.2000.00824.x. [DOI] [PubMed] [Google Scholar]
  15. Schönherr E., Hausser H., Beavan L., Kresse H. Decorin-type I collagen interaction. Presence of separate core protein-binding domains. J Biol Chem. 1995 Apr 14;270(15):8877–8883. doi: 10.1074/jbc.270.15.8877. [DOI] [PubMed] [Google Scholar]
  16. Scott J. E. Extracellular matrix, supramolecular organisation and shape. J Anat. 1995 Oct;187(Pt 2):259–269. [PMC free article] [PubMed] [Google Scholar]
  17. Scott J. E., Haigh M. Proteoglycan-type I collagen fibril interactions in bone and non-calcifying connective tissues. Biosci Rep. 1985 Jan;5(1):71–81. doi: 10.1007/BF01117443. [DOI] [PubMed] [Google Scholar]
  18. Scott J. E. Morphometry of cupromeronic blue-stained proteoglycan molecules in animal corneas, versus that of purified proteoglycans stained in vitro, implies that tertiary structures contribute to corneal ultrastructure. J Anat. 1992 Feb;180(Pt 1):155–164. [PMC free article] [PubMed] [Google Scholar]
  19. Scott J. E. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry. 1996 Jul 9;35(27):8795–8799. doi: 10.1021/bi960773t. [DOI] [PubMed] [Google Scholar]
  20. Scott J. E. The periphery of the developing collagen fibril. Quantitative relationships with dermatan sulphate and other surface-associated species. Biochem J. 1984 Feb 15;218(1):229–233. doi: 10.1042/bj2180229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scott J. E., Thomlinson A. M. The structure of interfibrillar proteoglycan bridges (shape modules') in extracellular matrix of fibrous connective tissues and their stability in various chemical environments. J Anat. 1998 Apr;192(Pt 3):391–405. doi: 10.1046/j.1469-7580.1998.19230391.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scott P. G., Dodd C. M., Tredget E. E., Ghahary A., Rahemtulla F. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Histopathology. 1995 May;26(5):423–431. doi: 10.1111/j.1365-2559.1995.tb00249.x. [DOI] [PubMed] [Google Scholar]
  23. Tsuchida K., Lind T., Kitagawa H., Lindahl U., Sugahara K., Lidholt K. Purification and characterization of fetal bovine serum beta-N-acetyl-D-galactosaminyltransferase and beta-D-glucuronyltransferase involved in chondroitin sulfate biosynthesis. Eur J Biochem. 1999 Sep;264(2):461–467. doi: 10.1046/j.1432-1327.1999.00635.x. [DOI] [PubMed] [Google Scholar]
  24. Vogel K. G., Paulsson M., Heinegård D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J. 1984 Nov 1;223(3):587–597. doi: 10.1042/bj2230587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vogel K. G., Trotter J. A. The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll Relat Res. 1987 Jun;7(2):105–114. doi: 10.1016/s0174-173x(87)80002-x. [DOI] [PubMed] [Google Scholar]
  26. Wasteson A. A method for the determination of the molecular weight and molecular-weight distribution of chondroitin sulphate. J Chromatogr. 1971 Jul 8;59(1):87–97. doi: 10.1016/s0021-9673(01)80009-1. [DOI] [PubMed] [Google Scholar]
  27. Weber I. T., Harrison R. W., Iozzo R. V. Model structure of decorin and implications for collagen fibrillogenesis. J Biol Chem. 1996 Dec 13;271(50):31767–31770. doi: 10.1074/jbc.271.50.31767. [DOI] [PubMed] [Google Scholar]
  28. Yeo T. K., Brown L., Dvorak H. F. Alterations in proteoglycan synthesis common to healing wounds and tumors. Am J Pathol. 1991 Jun;138(6):1437–1450. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES