Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 15;358(Pt 1):185–192. doi: 10.1042/0264-6021:3580185

Roles of the juxtamembrane and extracellular domains of angiotensin-converting enzyme in ectodomain shedding.

S Pang 1, A J Chubb 1, S L Schwager 1, M R Ehlers 1, E D Sturrock 1, N M Hooper 1
PMCID: PMC1222046  PMID: 11485566

Abstract

Angiotensin-converting enzyme (ACE) is one of a growing number of integral membrane proteins that is shed from the cell surface through proteolytic cleavage by a secretase. To investigate the requirements for ectodomain shedding, we replaced the glycosylphosphatidylinositol addition sequence in membrane dipeptidase (MDP) - a membrane protein that is not shed - with the juxtamembrane stalk, transmembrane (TM) and cytosolic domains of ACE. The resulting construct, MDP-STM(ACE), was targeted to the cell surface in a glycosylated and enzymically active form, and was shed into the medium. The site of cleavage in MDP-STM(ACE) was identified by MS as the Arg(374)-Ser(375) bond, corresponding to the Arg(1203)-Ser(1204) secretase cleavage site in somatic ACE. The release of MDP-STM(ACE) and ACE from the cells was inhibited in an identical manner by batimastat and two other hydroxamic acid-based zinc metallosecretase inhibitors. In contrast, a construct lacking the juxtamembrane stalk, MDP-TM(ACE), although expressed at the cell surface in an enzymically active form, was not shed, implying that the juxtamembrane stalk is the critical determinant of shedding. However, an additional construct, ACEDeltaC, in which the N-terminal domain of somatic ACE was fused to the stalk, TM and cytosolic domains, was also not shed, despite the presence of a cleavable stalk, implying that in contrast with the C-terminal domain, the N-terminal domain lacks a signal required for shedding. These data are discussed in the context of two classes of secretases that differ in their requirements for recognition of substrate proteins.

Full Text

The Full Text of this article is available as a PDF (206.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfalah M., Parkin E. T., Jacob R., Sturrock E. D., Mentele R., Turner A. J., Hooper N. M., Naim H. Y. A point mutation in the juxtamembrane stalk of human angiotensin I-converting enzyme invokes the action of a distinct secretase. J Biol Chem. 2001 Mar 23;276(24):21105–21109. doi: 10.1074/jbc.M100339200. [DOI] [PubMed] [Google Scholar]
  2. Althoff K., Müllberg J., Aasland D., Voltz N., Kallen K., Grötzinger J., Rose-John S. Recognition sequences and structural elements contribute to shedding susceptibility of membrane proteins. Biochem J. 2001 Feb 1;353(Pt 3):663–672. doi: 10.1042/0264-6021:3530663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Althoff K., Reddy P., Voltz N., Rose-John S., Müllberg J. Shedding of interleukin-6 receptor and tumor necrosis factor alpha. Contribution of the stalk sequence to the cleavage pattern of transmembrane proteins. Eur J Biochem. 2000 May;267(9):2624–2631. doi: 10.1046/j.1432-1327.2000.01278.x. [DOI] [PubMed] [Google Scholar]
  4. Araujo M. C., Melo R. I., Del Nery E., Alves M. F., Juliano M. A., Casarini D. E., Juliano L., Carmona A. K. Internally quenched fluorogenic substrates for angiotensin I-converting enzyme. J Hypertens. 1999 May;17(5):665–672. doi: 10.1097/00004872-199917050-00010. [DOI] [PubMed] [Google Scholar]
  5. Araujo M. C., Melo R. L., Cesari M. H., Juliano M. A., Juliano L., Carmona A. K. Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme. Biochemistry. 2000 Jul 25;39(29):8519–8525. doi: 10.1021/bi9928905. [DOI] [PubMed] [Google Scholar]
  6. Arribas J., López-Casillas F., Massagué J. Role of the juxtamembrane domains of the transforming growth factor-alpha precursor and the beta-amyloid precursor protein in regulated ectodomain shedding. J Biol Chem. 1997 Jul 4;272(27):17160–17165. doi: 10.1074/jbc.272.27.17160. [DOI] [PubMed] [Google Scholar]
  7. Black R. A., Rauch C. T., Kozlosky C. J., Peschon J. J., Slack J. L., Wolfson M. F., Castner B. J., Stocking K. L., Reddy P., Srinivasan S. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997 Feb 20;385(6618):729–733. doi: 10.1038/385729a0. [DOI] [PubMed] [Google Scholar]
  8. Black R. A., White J. M. ADAMs: focus on the protease domain. Curr Opin Cell Biol. 1998 Oct;10(5):654–659. doi: 10.1016/s0955-0674(98)80042-2. [DOI] [PubMed] [Google Scholar]
  9. Brewis I. A., Ferguson M. A., Mehlert A., Turner A. J., Hooper N. M. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J Biol Chem. 1995 Sep 29;270(39):22946–22956. doi: 10.1074/jbc.270.39.22946. [DOI] [PubMed] [Google Scholar]
  10. Christie G., Markwell R. E., Gray C. W., Smith L., Godfrey F., Mansfield F., Wadsworth H., King R., McLaughlin M., Cooper D. G. Alzheimer's disease: correlation of the suppression of beta-amyloid peptide secretion from cultured cells with inhibition of the chymotrypsin-like activity of the proteasome. J Neurochem. 1999 Jul;73(1):195–204. doi: 10.1046/j.1471-4159.1999.0730195.x. [DOI] [PubMed] [Google Scholar]
  11. Deng P., Wang Y. L., Haga Y., Pattengale P. K. Multiple factors determine the selection of the ectodomain cleavage site of human cell surface macrophage colony-stimulating factor. Biochemistry. 1998 Dec 22;37(51):17898–17904. doi: 10.1021/bi9817313. [DOI] [PubMed] [Google Scholar]
  12. Ehlers M. R., Chen Y. N., Riordan J. F. Spontaneous solubilization of membrane-bound human testis angiotensin-converting enzyme expressed in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1009–1013. doi: 10.1073/pnas.88.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ehlers M. R., Fox E. A., Strydom D. J., Riordan J. F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7741–7745. doi: 10.1073/pnas.86.20.7741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
  15. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry. 1991 Jul 23;30(29):7118–7126. doi: 10.1021/bi00243a012. [DOI] [PubMed] [Google Scholar]
  16. Ehlers M. R., Riordan J. F. Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry. 1991 Oct 22;30(42):10065–10074. doi: 10.1021/bi00106a001. [DOI] [PubMed] [Google Scholar]
  17. Ehlers M. R., Schwager S. L., Scholle R. R., Manji G. A., Brandt W. F., Riordan J. F. Proteolytic release of membrane-bound angiotensin-converting enzyme: role of the juxtamembrane stalk sequence. Biochemistry. 1996 Jul 23;35(29):9549–9559. doi: 10.1021/bi9602425. [DOI] [PubMed] [Google Scholar]
  18. Elenius K., Corfas G., Paul S., Choi C. J., Rio C., Plowman G. D., Klagsbrun M. A novel juxtamembrane domain isoform of HER4/ErbB4. Isoform-specific tissue distribution and differential processing in response to phorbol ester. J Biol Chem. 1997 Oct 17;272(42):26761–26768. doi: 10.1074/jbc.272.42.26761. [DOI] [PubMed] [Google Scholar]
  19. Hattori M., Osterfield M., Flanagan J. G. Regulated cleavage of a contact-mediated axon repellent. Science. 2000 Aug 25;289(5483):1360–1365. doi: 10.1126/science.289.5483.1360. [DOI] [PubMed] [Google Scholar]
  20. Hooper N. M. Angiotensin converting enzyme: implications from molecular biology for its physiological functions. Int J Biochem. 1991;23(7-8):641–647. doi: 10.1016/0020-711x(91)90032-i. [DOI] [PubMed] [Google Scholar]
  21. Hooper N. M., Karran E. H., Turner A. J. Membrane protein secretases. Biochem J. 1997 Jan 15;321(Pt 2):265–279. doi: 10.1042/bj3210265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hooper N. M., Low M. G., Turner A. J. Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol-specific phospholipase C. Biochem J. 1987 Jun 1;244(2):465–469. doi: 10.1042/bj2440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hooper N. M., Turner A. J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J. 1987 Feb 1;241(3):625–633. doi: 10.1042/bj2410625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Howard T. E., Shai S. Y., Langford K. G., Martin B. M., Bernstein K. E. Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol Cell Biol. 1990 Aug;10(8):4294–4302. doi: 10.1128/mcb.10.8.4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Keynan S., Habgood N. T., Hooper N. M., Turner A. J. Site-directed mutagenesis of conserved cysteine residues in porcine membrane dipeptidase. Cys 361 alone is involved in disulfide-linked dimerization. Biochemistry. 1996 Sep 24;35(38):12511–12517. doi: 10.1021/bi961193z. [DOI] [PubMed] [Google Scholar]
  26. Littlewood G. M., Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Affinity purification, characterization and localization of the phospholipase C-solubilized form of renal dipeptidase. Biochem J. 1989 Jan 15;257(2):361–367. doi: 10.1042/bj2570361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moss M. L., Jin S. L., Milla M. E., Bickett D. M., Burkhart W., Carter H. L., Chen W. J., Clay W. C., Didsbury J. R., Hassler D. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997 Feb 20;385(6618):733–736. doi: 10.1038/385733a0. [DOI] [PubMed] [Google Scholar]
  28. Naim H. Y. Angiotensin-converting enzyme of the human small intestine. Subunit and quaternary structure, biosynthesis and membrane association. Biochem J. 1992 Sep 1;286(Pt 2):451–457. doi: 10.1042/bj2860451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oppong S. Y., Hooper N. M. Characterization of a secretase activity which releases angiotensin-converting enzyme from the membrane. Biochem J. 1993 Jun 1;292(Pt 2):597–603. doi: 10.1042/bj2920597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parvathy S., Hussain I., Karran E. H., Turner A. J., Hooper N. M. Alzheimer's amyloid precursor protein alpha-secretase is inhibited by hydroxamic acid-based zinc metalloprotease inhibitors: similarities to the angiotensin converting enzyme secretase. Biochemistry. 1998 Feb 10;37(6):1680–1685. doi: 10.1021/bi972034y. [DOI] [PubMed] [Google Scholar]
  31. Parvathy S., Karran E. H., Turner A. J., Hooper N. M. The secretases that cleave angiotensin converting enzyme and the amyloid precursor protein are distinct from tumour necrosis factor-alpha convertase. FEBS Lett. 1998 Jul 10;431(1):63–65. doi: 10.1016/s0014-5793(98)00726-1. [DOI] [PubMed] [Google Scholar]
  32. Parvathy S., Oppong S. Y., Karran E. H., Buckle D. R., Turner A. J., Hooper N. M. Angiotensin-converting enzyme secretase is inhibited by zinc metalloprotease inhibitors and requires its substrate to be inserted in a lipid bilayer. Biochem J. 1997 Oct 1;327(Pt 1):37–43. doi: 10.1042/bj3270037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peschon J. J., Slack J. L., Reddy P., Stocking K. L., Sunnarborg S. W., Lee D. C., Russell W. E., Castner B. J., Johnson R. S., Fitzner J. N. An essential role for ectodomain shedding in mammalian development. Science. 1998 Nov 13;282(5392):1281–1284. doi: 10.1126/science.282.5392.1281. [DOI] [PubMed] [Google Scholar]
  34. Rached E., Hooper N. M., James P., Semenza G., Turner A. J., Mantei N. cDNA cloning and expression in Xenopus laevis oocytes of pig renal dipeptidase, a glycosyl-phosphatidylinositol-anchored ectoenzyme. Biochem J. 1990 Nov 1;271(3):755–760. doi: 10.1042/bj2710755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rio C., Buxbaum J. D., Peschon J. J., Corfas G. Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem. 2000 Apr 7;275(14):10379–10387. doi: 10.1074/jbc.275.14.10379. [DOI] [PubMed] [Google Scholar]
  36. Sadhukhan R., Santhamma K. R., Reddy P., Peschon J. J., Black R. A., Sen I. Unaltered cleavage and secretion of angiotensin-converting enzyme in tumor necrosis factor-alpha-converting enzyme-deficient mice. J Biol Chem. 1999 Apr 9;274(15):10511–10516. doi: 10.1074/jbc.274.15.10511. [DOI] [PubMed] [Google Scholar]
  37. Sadhukhan R., Sen G. C., Ramchandran R., Sen I. The distal ectodomain of angiotensin-converting enzyme regulates its cleavage-secretion from the cell surface. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):138–143. doi: 10.1073/pnas.95.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schlöndorff J., Blobel C. P. Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci. 1999 Nov;112(Pt 21):3603–3617. doi: 10.1242/jcs.112.21.3603. [DOI] [PubMed] [Google Scholar]
  39. Schwager S. L., Chubb A. J., Scholle R. R., Brandt W. F., Eckerskorn C., Sturrock E. D., Ehlers M. R. Phorbol ester-induced juxtamembrane cleavage of angiotensin-converting enzyme is not inhibited by a stalk containing intrachain disulfides. Biochemistry. 1998 Nov 3;37(44):15449–15456. doi: 10.1021/bi981260k. [DOI] [PubMed] [Google Scholar]
  40. Schwager S. L., Chubb A. J., Scholle R. R., Brandt W. F., Mentele R., Riordan J. F., Sturrock E. D., Ehlers M. R. Modulation of juxtamembrane cleavage ("shedding") of angiotensin-converting enzyme by stalk glycosylation: evidence for an alternative shedding protease. Biochemistry. 1999 Aug 10;38(32):10388–10397. doi: 10.1021/bi990357j. [DOI] [PubMed] [Google Scholar]
  41. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  42. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wei L., Alhenc-Gelas F., Corvol P., Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem. 1991 May 15;266(14):9002–9008. [PubMed] [Google Scholar]
  44. White I. J., Souabni A., Hooper N. M. Comparison of the glycosyl-phosphatidylinositol cleavage/attachment site between mammalian cells and parasitic protozoa. J Cell Sci. 2000 Feb;113(Pt 4):721–727. doi: 10.1242/jcs.113.4.721. [DOI] [PubMed] [Google Scholar]
  45. Woodman Z. L., Oppong S. Y., Cook S., Hooper N. M., Schwager S. L., Brandt W. F., Ehlers M. R., Sturrock E. D. Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochem J. 2000 May 1;347(Pt 3):711–718. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES