Abstract
The insolubility of glycosylphosphatidylinositol (GPI)-anchored proteins in certain detergents appears to be an intrinsic property of their association with sphingolipids and cholesterol in lipid rafts. We show that the GPI-anchored protein membrane dipeptidase is localized in detergent-insoluble lipid rafts isolated from porcine kidney microvillar membranes, and that these rafts, which lack caveolin, are enriched not only in sphingomyelin and cholesterol, but also in the glycosphingolipid lactosylceramide (LacCer). Dipeptidase purified from porcine kidney was reconstituted into artificial liposomes in order to investigate the relationship between glycosphingolipids and GPI-anchored protein detergent-insolubility. Dipeptidase was insoluble in liposomes containing extremely low concentrations of LacCer. In contrast, identical concentrations of glucosylceramide or galactosylceramide failed to promote significant detergent-insolubility. Cholesterol was shown to enhance the detergent-insoluble effect of LacCer. GC-MS analysis revealed dramatic differences between the fatty acyl compositions of LacCer and those of the other glycosphingolipids. However, despite these differences, we show that the unusually marked effect of LacCer to promote the detergent-insolubility of dipeptidase cannot be singularly attributed to the fatty acyl composition of this glycosphingolipid molecule. Instead, we suggest that the ability of LacCer to confer detergent-insolubility on this GPI-anchored protein is dependent on the structure of the lipid molecule in its entirety, and that this glycosphingolipid may have an important role to play in the stabilization of lipid rafts, particularly the caveolin-free glycosphingolipid signalling domains.
Full Text
The Full Text of this article is available as a PDF (199.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed S. N., Brown D. A., London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997 Sep 9;36(36):10944–10953. doi: 10.1021/bi971167g. [DOI] [PubMed] [Google Scholar]
- Arreaza G., Melkonian K. A., LaFevre-Bernt M., Brown D. A. Triton X-100-resistant membrane complexes from cultured kidney epithelial cells contain the Src family protein tyrosine kinase p62yes. J Biol Chem. 1994 Jul 22;269(29):19123–19127. [PubMed] [Google Scholar]
- Benting J., Rietveld A., Ansorge I., Simons K. Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro. FEBS Lett. 1999 Nov 26;462(1-2):47–50. doi: 10.1016/s0014-5793(99)01501-x. [DOI] [PubMed] [Google Scholar]
- Bickel P. E., Scherer P. E., Schnitzer J. E., Oh P., Lisanti M. P., Lodish H. F. Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem. 1997 May 23;272(21):13793–13802. doi: 10.1074/jbc.272.21.13793. [DOI] [PubMed] [Google Scholar]
- Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brewis I. A., Ferguson M. A., Mehlert A., Turner A. J., Hooper N. M. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J Biol Chem. 1995 Sep 29;270(39):22946–22956. doi: 10.1074/jbc.270.39.22946. [DOI] [PubMed] [Google Scholar]
- Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
- Brown D. A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000 Jun 9;275(23):17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
- Brown D. A., London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
- Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
- Brown R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 1998 Jan;111(Pt 1):1–9. doi: 10.1242/jcs.111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang W. J., Ying Y. S., Rothberg K. G., Hooper N. M., Turner A. J., Gambliel H. A., De Gunzburg J., Mumby S. M., Gilman A. G., Anderson R. G. Purification and characterization of smooth muscle cell caveolae. J Cell Biol. 1994 Jul;126(1):127–138. doi: 10.1083/jcb.126.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danielsen E. M. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry. 1995 Feb 7;34(5):1596–1605. doi: 10.1021/bi00005a016. [DOI] [PubMed] [Google Scholar]
- Fiedler K., Kobayashi T., Kurzchalia T. V., Simons K. Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry. 1993 Jun 29;32(25):6365–6373. doi: 10.1021/bi00076a009. [DOI] [PubMed] [Google Scholar]
- Fra A. M., Williamson E., Simons K., Parton R. G. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem. 1994 Dec 9;269(49):30745–30748. [PubMed] [Google Scholar]
- Gorodinsky A., Harris D. A. Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol. 1995 May;129(3):619–627. doi: 10.1083/jcb.129.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanada K., Nishijima M., Akamatsu Y., Pagano R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem. 1995 Mar 17;270(11):6254–6260. doi: 10.1074/jbc.270.11.6254. [DOI] [PubMed] [Google Scholar]
- Hesp J. R., Hooper N. M. Proteolytic fragmentation reveals the oligomeric and domain structure of porcine aminopeptidase A. Biochemistry. 1997 Mar 11;36(10):3000–3007. doi: 10.1021/bi962401q. [DOI] [PubMed] [Google Scholar]
- Hooper N. M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol. 1999 Apr-Jun;16(2):145–156. doi: 10.1080/096876899294607. [DOI] [PubMed] [Google Scholar]
- Hooper N. M., Keen J., Pappin D. J., Turner A. J. Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J. 1987 Oct 1;247(1):85–93. doi: 10.1042/bj2470085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper N. M., Low M. G., Turner A. J. Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol-specific phospholipase C. Biochem J. 1987 Jun 1;244(2):465–469. doi: 10.1042/bj2440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Lett. 1988 Mar 14;229(2):340–344. doi: 10.1016/0014-5793(88)81152-9. [DOI] [PubMed] [Google Scholar]
- Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem J. 1988 Mar 15;250(3):865–869. doi: 10.1042/bj2500865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Isolation and characterization of the amphipathic form of renal dipeptidase and hydrolysis of its glycosyl-phosphatidylinositol anchor by an activity in plasma. Biochem J. 1989 Aug 1;261(3):811–818. doi: 10.1042/bj2610811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper N. M., Turner A. J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J. 1987 Feb 1;241(3):625–633. doi: 10.1042/bj2410625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichikawa S., Hirabayashi Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 1998 May;8(5):198–202. doi: 10.1016/s0962-8924(98)01249-5. [DOI] [PubMed] [Google Scholar]
- Iwabuchi K., Handa K., Hakomori S. Separation of "glycosphingolipid signaling domain" from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J Biol Chem. 1998 Dec 11;273(50):33766–33773. doi: 10.1074/jbc.273.50.33766. [DOI] [PubMed] [Google Scholar]
- Lannert H., Gorgas K., Meissner I., Wieland F. T., Jeckel D. Functional organization of the Golgi apparatus in glycosphingolipid biosynthesis. Lactosylceramide and subsequent glycosphingolipids are formed in the lumen of the late Golgi. J Biol Chem. 1998 Jan 30;273(5):2939–2946. doi: 10.1074/jbc.273.5.2939. [DOI] [PubMed] [Google Scholar]
- Littlewood G. M., Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Affinity purification, characterization and localization of the phospholipase C-solubilized form of renal dipeptidase. Biochem J. 1989 Jan 15;257(2):361–367. doi: 10.1042/bj2570361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macala L. J., Yu R. K., Ando S. Analysis of brain lipids by high performance thin-layer chromatography and densitometry. J Lipid Res. 1983 Sep;24(9):1243–1250. [PubMed] [Google Scholar]
- Navarrete Santos A., Roentsch J., Danielsen E. M., Langner J., Riemann D. Aminopeptidase N/CD13 is associated with raft membrane microdomains in monocytes. Biochem Biophys Res Commun. 2000 Mar 5;269(1):143–148. doi: 10.1006/bbrc.2000.2271. [DOI] [PubMed] [Google Scholar]
- Oppong S. Y., Hooper N. M. Characterization of a secretase activity which releases angiotensin-converting enzyme from the membrane. Biochem J. 1993 Jun 1;292(Pt 2):597–603. doi: 10.1042/bj2920597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostermeyer A. G., Beckrich B. T., Ivarson K. A., Grove K. E., Brown D. A. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J Biol Chem. 1999 Nov 26;274(48):34459–34466. doi: 10.1074/jbc.274.48.34459. [DOI] [PubMed] [Google Scholar]
- Parkin E. T., Hussain I., Karran E. H., Turner A. J., Hooper N. M. Characterization of detergent-insoluble complexes containing the familial Alzheimer's disease-associated presenilins. J Neurochem. 1999 Apr;72(4):1534–1543. doi: 10.1046/j.1471-4159.1999.721534.x. [DOI] [PubMed] [Google Scholar]
- Parkin E. T., Hussain I., Turner A. J., Hooper N. M. The amyloid precursor protein is not enriched in caveolae-like, detergent-insoluble membrane microdomains. J Neurochem. 1997 Nov;69(5):2179–2188. doi: 10.1046/j.1471-4159.1997.69052179.x. [DOI] [PubMed] [Google Scholar]
- Parkin E. T., Turner A. J., Hooper N. M. Isolation and characterization of two distinct low-density, Triton-insoluble, complexes from porcine lung membranes. Biochem J. 1996 Nov 1;319(Pt 3):887–896. doi: 10.1042/bj3190887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riemann D., Hansen G. H., Niels-Christiansen L., Thorsen E., Immerdal L., Santos A. N., Kehlen A., Langner J., Danielsen E. M. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains. Biochem J. 2001 Feb 15;354(Pt 1):47–55. doi: 10.1042/0264-6021:3540047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargiacomo M., Sudol M., Tang Z., Lisanti M. P. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol. 1993 Aug;122(4):789–807. doi: 10.1083/jcb.122.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder R. J., Ahmed S. N., Zhu Y., London E., Brown D. A. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem. 1998 Jan 9;273(2):1150–1157. doi: 10.1074/jbc.273.2.1150. [DOI] [PubMed] [Google Scholar]
- Schroeder R., London E., Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12130–12134. doi: 10.1073/pnas.91.25.12130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scotto A. W., Zakim D. Reconstitution of membrane proteins. Spontaneous association of integral membrane proteins with preformed unilamellar lipid bilayers. Biochemistry. 1985 Jul 16;24(15):4066–4075. doi: 10.1021/bi00336a040. [DOI] [PubMed] [Google Scholar]
- Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
- Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
- Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988 Aug 23;27(17):6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
- Simons M., Friedrichson T., Schulz J. B., Pitto M., Masserini M., Kurzchalia T. V. Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol Biol Cell. 1999 Oct;10(10):3187–3196. doi: 10.1091/mbc.10.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stulnig T. M., Berger M., Sigmund T., Stockinger H., Horejsí V., Waldhäusl W. Signal transduction via glycosyl phosphatidylinositol-anchored proteins in T cells is inhibited by lowering cellular cholesterol. J Biol Chem. 1997 Aug 1;272(31):19242–19247. doi: 10.1074/jbc.272.31.19242. [DOI] [PubMed] [Google Scholar]
- Taraboulos A., Scott M., Semenov A., Avrahami D., Laszlo L., Prusiner S. B., Avraham D. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol. 1995 Apr;129(1):121–132. doi: 10.1083/jcb.129.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu C., Butz S., Ying Y., Anderson R. G. Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem. 1997 Feb 7;272(6):3554–3559. doi: 10.1074/jbc.272.6.3554. [DOI] [PubMed] [Google Scholar]
- Yu Z. W., Calvert T. L., Leckband D. Molecular forces between membranes displaying neutral glycosphingolipids: evidence for carbohydrate attraction. Biochemistry. 1998 Feb 10;37(6):1540–1550. doi: 10.1021/bi971010o. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Iwabuchi K., Nunomura S., Hakomori S. Effect of synthetic sialyl 2-->1 sphingosine and other glycosylsphingosines on the structure and function of the "glycosphingolipid signaling domain (GSD)" in mouse melanoma B16 cells. Biochemistry. 2000 Mar 14;39(10):2459–2468. doi: 10.1021/bi991882l. [DOI] [PubMed] [Google Scholar]
- Zurzolo C., van't Hof W., van Meer G., Rodriguez-Boulan E. VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells. EMBO J. 1994 Jan 1;13(1):42–53. doi: 10.1002/j.1460-2075.1994.tb06233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]