Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 15;358(Pt 1):225–232. doi: 10.1042/0264-6021:3580225

Structure and expression of human mitochondrial adenylate kinase targeted to the mitochondrial matrix.

T Noma 1, K Fujisawa 1, Y Yamashiro 1, M Shinohara 1, A Nakazawa 1, T Gondo 1, T Ishihara 1, K Yoshinobu 1
PMCID: PMC1222051  PMID: 11485571

Abstract

The previously isolated cDNA encoding human adenylate kinase (AK) isozyme 3 was recently renamed AK4. Consequently, human AK3 cDNA remains to be identified and we have little information about the functional relationship between human AK3 and AK4. In pursuit of the physiological roles of both the AK3 and AK4 proteins, we first isolated an authentic human AK3 cDNA and compared their expression. Nucleotide sequencing revealed that the cDNA encoded a 227-amino-acid protein, with a deduced molecular mass of 25.6 kDa, that shares greater homology with the AK3 cDNAs isolated from bovine and rat than that from human. We named the isolated cDNA AK3. Northern-blot analysis revealed that AK3 mRNA was present in all tissues examined, and was highly expressed in heart, skeletal muscle and liver, moderately expressed in pancreas and kidney, and weakly expressed in placenta, brain and lung. On the other hand, we found that human AK4 mRNA was highly expressed in kidney, moderately expressed in heart and liver and weakly expressed in brain. Western-blot analysis demonstrated expression profiles of AK3 and AK4 that were similar to their mRNA expression patterns in each tissue. Over expression of AK3, but not AK4, in both Escherichia coli CV2, a temperature-sensitive AK mutant, and a human embryonic kidney-derived cell line, HEK-293, not only produced significant GTP:AMP phosphotransferase (AK3) activity, but also complemented the CV2 cells at 42 degrees C. Subcellular and submitochondrial fractionation analysis demonstrated that both AK3 and AK4 are localized in the mitochondrial matrix.

Full Text

The Full Text of this article is available as a PDF (228.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULGER R. E. THE SHAPE OF RAT KIDNEY TUBULAR CELLS. Am J Anat. 1965 Jan;116:237–255. doi: 10.1002/aja.1001160112. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
  4. Chenchik A., Diachenko L., Moqadam F., Tarabykin V., Lukyanov S., Siebert P. D. Full-length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated cDNA. Biotechniques. 1996 Sep;21(3):526–534. doi: 10.2144/96213pf02. [DOI] [PubMed] [Google Scholar]
  5. Cronan J. E., Jr, Godson G. N. Mutants of Escherichia coli with temperature-sensitive lesions in membrane phospholipid synthesis: genetic analysis of glycerol-3-phosphate acyltransferase mutants. Mol Gen Genet. 1972;116(3):199–210. doi: 10.1007/BF00269765. [DOI] [PubMed] [Google Scholar]
  6. Dzeja P. P., Terzic A. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J. 1998 May;12(7):523–529. doi: 10.1096/fasebj.12.7.523. [DOI] [PubMed] [Google Scholar]
  7. Glick B. S., Brandt A., Cunningham K., Müller S., Hallberg R. L., Schatz G. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell. 1992 May 29;69(5):809–822. doi: 10.1016/0092-8674(92)90292-k. [DOI] [PubMed] [Google Scholar]
  8. Heldt H. W., Schwalbach K. The participation of GTP-AMP-P transferase in substrate level phosphate transfer of rat liver mitochondria. Eur J Biochem. 1967 Apr;1(2):199–206. doi: 10.1007/978-3-662-25813-2_31. [DOI] [PubMed] [Google Scholar]
  9. Janssen E., Dzeja P. P., Oerlemans F., Simonetti A. W., Heerschap A., de Haan A., Rush P. S., Terjung R. R., Wieringa B., Terzic A. Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement. EMBO J. 2000 Dec 1;19(23):6371–6381. doi: 10.1093/emboj/19.23.6371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Khoo J. C., Russell P. J. Isoenzymes of adenylate kinase in human tissue. Biochim Biophys Acta. 1972 Apr 7;268(1):98–101. doi: 10.1016/0005-2744(72)90202-1. [DOI] [PubMed] [Google Scholar]
  11. Kishi F., Nakazawa A. Development of myokinase mRNA during embryogenesis of the chick. J Biochem. 1985 Oct;98(4):1091–1095. doi: 10.1093/oxfordjournals.jbchem.a135357. [DOI] [PubMed] [Google Scholar]
  12. Kishi F., Tanizawa Y., Nakazawa A. Isolation and characterization of two types of cDNA for mitochondrial adenylate kinase and their expression in Escherichia coli. J Biol Chem. 1987 Aug 25;262(24):11785–11789. [PubMed] [Google Scholar]
  13. Konrad M. Molecular analysis of the essential gene for adenylate kinase from the fission yeast Schizosaccharomyces pombe. J Biol Chem. 1993 May 25;268(15):11326–11334. [PubMed] [Google Scholar]
  14. Kozak M. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res. 1981 Oct 24;9(20):5233–5252. doi: 10.1093/nar/9.20.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Murakami K., Amaya Y., Takiguchi M., Ebina Y., Mori M. Reconstitution of mitochondrial protein transport with purified ornithine carbamoyltransferase precursor expressed in Escherichia coli. J Biol Chem. 1988 Dec 5;263(34):18437–18442. [PubMed] [Google Scholar]
  17. Nakazawa A., Yamada M., Tanaka H., Shahjahan M., Tanabe T. Gene structures of three vertebrate adenylate kinase isozymes. Prog Clin Biol Res. 1990;344:495–514. [PubMed] [Google Scholar]
  18. Nobumoto M., Yamada M., Song S., Inouye S., Nakazawa A. Mechanism of mitochondrial import of adenylate kinase isozymes. J Biochem. 1998 Jan;123(1):128–135. doi: 10.1093/oxfordjournals.jbchem.a021899. [DOI] [PubMed] [Google Scholar]
  19. Noma T., Adachi N., Ito H., Nakazawa A. Characterization of the 5'-flanking region of the gene encoding bovine adenylate kinase isozyme 3. Biochim Biophys Acta. 1999 Dec 23;1489(2-3):383–388. doi: 10.1016/s0167-4781(99)00207-9. [DOI] [PubMed] [Google Scholar]
  20. Noma T., Adachi N., Nakazawa A. Cloning and functional characterization of the promoter region of the gene encoding human adenylate kinase isozyme 3. Biochem Biophys Res Commun. 1999 Nov 2;264(3):990–997. doi: 10.1006/bbrc.1999.1616. [DOI] [PubMed] [Google Scholar]
  21. Noma T., Murakami R., Yamashiro Y., Fujisawa K., Inouye S., Nakazawa A. cDNA cloning and chromosomal mapping of the gene encoding adenylate kinase 2 from Drosophila melanogaster. Biochim Biophys Acta. 2000 Jan 31;1490(1-2):109–114. doi: 10.1016/s0167-4781(99)00223-7. [DOI] [PubMed] [Google Scholar]
  22. Noma T., Song S., Yoon Y. S., Tanaka S., Nakazawa A. cDNA cloning and tissue-specific expression of the gene encoding human adenylate kinase isozyme 2. Biochim Biophys Acta. 1998 Jan 7;1395(1):34–39. doi: 10.1016/s0167-4781(97)00193-0. [DOI] [PubMed] [Google Scholar]
  23. Noma T., Yoon Y. S., Nakazawa A. Overexpression of NeuroD in PC12 cells alters morphology and enhances expression of the adenylate kinase isozyme 1 gene. Brain Res Mol Brain Res. 1999 Apr 6;67(1):53–63. doi: 10.1016/s0169-328x(99)00038-8. [DOI] [PubMed] [Google Scholar]
  24. Pucar D., Janssen E., Dzeja P. P., Juranic N., Macura S., Wieringa B., Terzic A. Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress. J Biol Chem. 2000 Dec 29;275(52):41424–41429. doi: 10.1074/jbc.M007903200. [DOI] [PubMed] [Google Scholar]
  25. Qualtieri A., Pedace V., Bisconte M. G., Bria M., Gulino B., Andreoli V., Brancati C. Severe erythrocyte adenylate kinase deficiency due to homozygous A-->G substitution at codon 164 of human AK1 gene associated with chronic haemolytic anaemia. Br J Haematol. 1997 Dec;99(4):770–776. doi: 10.1046/j.1365-2141.1997.4953299.x. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schricker R., Magdolen V., Strobel G., Bogengruber E., Breitenbach M., Bandlow W. Strain-dependent occurrence of functional GTP:AMP phosphotransferase (AK3) in Saccharomyces cerevisiae. J Biol Chem. 1995 Dec 29;270(52):31103–31110. doi: 10.1074/jbc.270.52.31103. [DOI] [PubMed] [Google Scholar]
  28. Shahjahan M., Yamada M., Tanaka H., Nakazawa A. Cloning and characterization of the gene encoding bovine mitochondrial adenylate kinase isozyme 3. Gene. 1991 Nov 15;107(2):313–317. doi: 10.1016/0378-1119(91)90332-6. [DOI] [PubMed] [Google Scholar]
  29. Tanabe T., Yamada M., Noma T., Kajii T., Nakazawa A. Tissue-specific and developmentally regulated expression of the genes encoding adenylate kinase isozymes. J Biochem. 1993 Feb;113(2):200–207. doi: 10.1093/oxfordjournals.jbchem.a124026. [DOI] [PubMed] [Google Scholar]
  30. Tomasselli A. G., Noda L. H. Mitochondrial ATP:AMP phosphotransferase from beef heart: purification and properties. Eur J Biochem. 1980 Feb;103(3):481–491. doi: 10.1111/j.1432-1033.1980.tb05972.x. [DOI] [PubMed] [Google Scholar]
  31. Tso J. Y., Sun X. H., Kao T. H., Reece K. S., Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. doi: 10.1093/nar/13.7.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van Rompay A. R., Johansson M., Karlsson A. Identification of a novel human adenylate kinase. cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein. Eur J Biochem. 1999 Apr;261(2):509–517. doi: 10.1046/j.1432-1327.1999.00294.x. [DOI] [PubMed] [Google Scholar]
  33. Xu G., O'Connell P., Stevens J., White R. Characterization of human adenylate kinase 3 (AK3) cDNA and mapping of the AK3 pseudogene to an intron of the NF1 gene. Genomics. 1992 Jul;13(3):537–542. doi: 10.1016/0888-7543(92)90122-9. [DOI] [PubMed] [Google Scholar]
  34. Yamada M., Shahjahan M., Tanabe T., Kishi F., Nakazawa A. Cloning and characterization of cDNA for mitochondrial GTP:AMP phosphotransferase of bovine liver. J Biol Chem. 1989 Nov 15;264(32):19192–19199. [PubMed] [Google Scholar]
  35. Yoneda T., Sato M., Maeda M., Takagi H. Identification of a novel adenylate kinase system in the brain: cloning of the fourth adenylate kinase. Brain Res Mol Brain Res. 1998 Nov 20;62(2):187–195. doi: 10.1016/s0169-328x(98)00249-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES