Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):305–314. doi: 10.1042/0264-6021:3580305

Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its Arg-Gly-Gly (RGG) box and interacts with human arginine methyltransferase HRMT1L1.

J Kzhyshkowska 1, H Schütt 1, M Liss 1, E Kremmer 1, R Stauber 1, H Wolf 1, T Dobner 1
PMCID: PMC1222062  PMID: 11513728

Abstract

The heterogeneous nuclear ribonucleoprotein (hnRNP) family includes predominantly nuclear proteins acting at different stages of mRNA metabolism. A characteristic feature of hnRNPs is to undergo post-translational asymmetric arginine methylation catalysed by different type 1 protein arginine methyltransferases (PRMTs). A novel mammalian hnRNP, E1B-AP5, recently identified by its interaction with adenovirus early protein E1B-55 kDa, has been proposed to have a regulatory role in adenoviral and host-cell mRNA processing/nuclear export [Gabler, Schutt, Groitl, Wolf, Shenk and Dobner (1998) J. Virol. 72, 7960-7971]. Here we report that E1B-AP5 is methylated in vivo in its Arg-Gly-Gly (RGG)-box domain, known to mediate protein-RNA interactions. The activity responsible for E1B-AP5 methylation forms a complex with E1B-AP5 in vivo. The predominant mammalian arginine methyltransferase HRMT1L2 (hPRMT1) did not detectably methylate endogenous E1B-AP5 despite efficiently methylating a recombinant RGG-box domain of E1B-AP5. Using yeast two-hybrid screening we identified HRMT1L1 (PRMT2) as one of the proteins interacting with E1B-AP5. By in situ immunofluorescence we demonstrated that E1B-AP5 co-localizes with the nuclear fraction of HRMT1L1. The Src homology 3 (SH3) domain of HRMT1L1 was essential for its interaction with E1B-AP5 in vivo. We suggest that HRMT1L1 is responsible for specific E1B-AP5 methylation in vivo.

Full Text

The Full Text of this article is available as a PDF (305.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramovich C., Yakobson B., Chebath J., Revel M. A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J. 1997 Jan 15;16(2):260–266. doi: 10.1093/emboj/16.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachi A., Braun I. C., Rodrigues J. P., Panté N., Ribbeck K., von Kobbe C., Kutay U., Wilm M., Görlich D., Carmo-Fonseca M. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA. 2000 Jan;6(1):136–158. doi: 10.1017/s1355838200991994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bagni C., Lapeyre B. Gar1p binds to the small nucleolar RNAs snR10 and snR30 in vitro through a nontypical RNA binding element. J Biol Chem. 1998 May 1;273(18):10868–10873. doi: 10.1074/jbc.273.18.10868. [DOI] [PubMed] [Google Scholar]
  4. Bedford M. T., Frankel A., Yaffe M. B., Clarke S., Leder P., Richard S. Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem. 2000 May 26;275(21):16030–16036. doi: 10.1074/jbc.M909368199. [DOI] [PubMed] [Google Scholar]
  5. Belyanskaya L. L., Gehrig P. M., Gehring H. Exposure on cell surface and extensive arginine methylation of ewing sarcoma (EWS) protein. J Biol Chem. 2001 Mar 9;276(22):18681–18687. doi: 10.1074/jbc.M011446200. [DOI] [PubMed] [Google Scholar]
  6. Brown V., Small K., Lakkis L., Feng Y., Gunter C., Wilkinson K. D., Warren S. T. Purified recombinant Fmrp exhibits selective RNA binding as an intrinsic property of the fragile X mental retardation protein. J Biol Chem. 1998 Jun 19;273(25):15521–15527. doi: 10.1074/jbc.273.25.15521. [DOI] [PubMed] [Google Scholar]
  7. Carson J. H., Kwon S., Barbarese E. RNA trafficking in myelinating cells. Curr Opin Neurobiol. 1998 Oct;8(5):607–612. doi: 10.1016/s0959-4388(98)80088-3. [DOI] [PubMed] [Google Scholar]
  8. Chen D., Huang S. M., Stallcup M. R. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem. 2000 Dec 29;275(52):40810–40816. doi: 10.1074/jbc.M005459200. [DOI] [PubMed] [Google Scholar]
  9. Chen D., Ma H., Hong H., Koh S. S., Huang S. M., Schurter B. T., Aswad D. W., Stallcup M. R. Regulation of transcription by a protein methyltransferase. Science. 1999 Jun 25;284(5423):2174–2177. doi: 10.1126/science.284.5423.2174. [DOI] [PubMed] [Google Scholar]
  10. Cohen G. B., Ren R., Baltimore D. Modular binding domains in signal transduction proteins. Cell. 1995 Jan 27;80(2):237–248. doi: 10.1016/0092-8674(95)90406-9. [DOI] [PubMed] [Google Scholar]
  11. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  12. Eggert M., Michel J., Schneider S., Bornfleth H., Baniahmad A., Fackelmayer F. O., Schmidt S., Renkawitz R. The glucocorticoid receptor is associated with the RNA-binding nuclear matrix protein hnRNP U. J Biol Chem. 1997 Nov 7;272(45):28471–28478. doi: 10.1074/jbc.272.45.28471. [DOI] [PubMed] [Google Scholar]
  13. Gabler S., Schütt H., Groitl P., Wolf H., Shenk T., Dobner T. E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol. 1998 Oct;72(10):7960–7971. doi: 10.1128/jvi.72.10.7960-7971.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gary J. D., Clarke S. RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol. 1998;61:65–131. doi: 10.1016/s0079-6603(08)60825-9. [DOI] [PubMed] [Google Scholar]
  15. Ghisolfi L., Joseph G., Amalric F., Erard M. The glycine-rich domain of nucleolin has an unusual supersecondary structure responsible for its RNA-helix-destabilizing properties. J Biol Chem. 1992 Feb 15;267(5):2955–2959. [PubMed] [Google Scholar]
  16. Ghisolfi L., Kharrat A., Joseph G., Amalric F., Erard M. Concerted activities of the RNA recognition and the glycine-rich C-terminal domains of nucleolin are required for efficient complex formation with pre-ribosomal RNA. Eur J Biochem. 1992 Oct 15;209(2):541–548. doi: 10.1111/j.1432-1033.1992.tb17318.x. [DOI] [PubMed] [Google Scholar]
  17. Kay B. K., Williamson M. P., Sudol M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 2000 Feb;14(2):231–241. [PubMed] [Google Scholar]
  18. Kim M. K., Nikodem V. M. hnRNP U inhibits carboxy-terminal domain phosphorylation by TFIIH and represses RNA polymerase II elongation. Mol Cell Biol. 1999 Oct;19(10):6833–6844. doi: 10.1128/mcb.19.10.6833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim S., Merrill B. M., Rajpurohit R., Kumar A., Stone K. L., Papov V. V., Schneiders J. M., Szer W., Wilson S. H., Paik W. K. Identification of N(G)-methylarginine residues in human heterogeneous RNP protein A1: Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe is a preferred recognition motif. Biochemistry. 1997 Apr 29;36(17):5185–5192. doi: 10.1021/bi9625509. [DOI] [PubMed] [Google Scholar]
  20. Kipp M., Göhring F., Ostendorp T., van Drunen C. M., van Driel R., Przybylski M., Fackelmayer F. O. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol. 2000 Oct;20(20):7480–7489. doi: 10.1128/mcb.20.20.7480-7489.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klein S., Carroll J. A., Chen Y., Henry M. F., Henry P. A., Ortonowski I. E., Pintucci G., Beavis R. C., Burgess W. H., Rifkin D. B. Biochemical analysis of the arginine methylation of high molecular weight fibroblast growth factor-2. J Biol Chem. 2000 Feb 4;275(5):3150–3157. doi: 10.1074/jbc.275.5.3150. [DOI] [PubMed] [Google Scholar]
  22. Koh S. S., Chen D., Lee Y. H., Stallcup M. R. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem. 2001 Jan 12;276(2):1089–1098. doi: 10.1074/jbc.M004228200. [DOI] [PubMed] [Google Scholar]
  23. Krecic A. M., Swanson M. S. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999 Jun;11(3):363–371. doi: 10.1016/S0955-0674(99)80051-9. [DOI] [PubMed] [Google Scholar]
  24. Lin W. J., Gary J. D., Yang M. C., Clarke S., Herschman H. R. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem. 1996 Jun 21;271(25):15034–15044. doi: 10.1074/jbc.271.25.15034. [DOI] [PubMed] [Google Scholar]
  25. Liu Q., Dreyfuss G. In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol. 1995 May;15(5):2800–2808. doi: 10.1128/mcb.15.5.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mayer B. J., Gupta R. Functions of SH2 and SH3 domains. Curr Top Microbiol Immunol. 1998;228:1–22. doi: 10.1007/978-3-642-80481-6_1. [DOI] [PubMed] [Google Scholar]
  27. Mears W. E., Rice S. A. The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J Virol. 1996 Nov;70(11):7445–7453. doi: 10.1128/jvi.70.11.7445-7453.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mowen K. A., Tang J., Zhu W., Schurter B. T., Shuai K., Herschman H. R., David M. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell. 2001 Mar 9;104(5):731–741. doi: 10.1016/s0092-8674(01)00269-0. [DOI] [PubMed] [Google Scholar]
  29. Nakielny S., Dreyfuss G. Nuclear export of proteins and RNAs. Curr Opin Cell Biol. 1997 Jun;9(3):420–429. doi: 10.1016/s0955-0674(97)80016-6. [DOI] [PubMed] [Google Scholar]
  30. Pintucci G., Quarto N., Rifkin D. B. Methylation of high molecular weight fibroblast growth factor-2 determines post-translational increases in molecular weight and affects its intracellular distribution. Mol Biol Cell. 1996 Aug;7(8):1249–1258. doi: 10.1091/mbc.7.8.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pollack B. P., Kotenko S. V., He W., Izotova L. S., Barnoski B. L., Pestka S. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem. 1999 Oct 29;274(44):31531–31542. doi: 10.1074/jbc.274.44.31531. [DOI] [PubMed] [Google Scholar]
  32. Rajpurohit R., Paik W. K., Kim S. Effect of enzymic methylation of heterogeneous ribonucleoprotein particle A1 on its nucleic-acid binding and controlled proteolysis. Biochem J. 1994 Dec 15;304(Pt 3):903–909. doi: 10.1042/bj3040903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Romig H., Fackelmayer F. O., Renz A., Ramsperger U., Richter A. Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J. 1992 Sep;11(9):3431–3440. doi: 10.1002/j.1460-2075.1992.tb05422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rosorius O., Heger P., Stelz G., Hirschmann N., Hauber J., Stauber R. H. Direct observation of nucleocytoplasmic transport by microinjection of GFP-tagged proteins in living cells. Biotechniques. 1999 Aug;27(2):350–355. doi: 10.2144/99272rr02. [DOI] [PubMed] [Google Scholar]
  35. Scott H. S., Antonarakis S. E., Lalioti M. D., Rossier C., Silver P. A., Henry M. F. Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics. 1998 Mar 15;48(3):330–340. doi: 10.1006/geno.1997.5190. [DOI] [PubMed] [Google Scholar]
  36. Shamoo Y., Abdul-Manan N., Patten A. M., Crawford J. K., Pellegrini M. C., Williams K. R. Both RNA-binding domains in heterogenous nuclear ribonucleoprotein A1 contribute toward single-stranded-RNA binding. Biochemistry. 1994 Jul 12;33(27):8272–8281. doi: 10.1021/bi00193a014. [DOI] [PubMed] [Google Scholar]
  37. Shen E. C., Henry M. F., Weiss V. H., Valentini S. R., Silver P. A., Lee M. S. Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev. 1998 Mar 1;12(5):679–691. doi: 10.1101/gad.12.5.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Siomi H., Dreyfuss G. RNA-binding proteins as regulators of gene expression. Curr Opin Genet Dev. 1997 Jun;7(3):345–353. doi: 10.1016/s0959-437x(97)80148-7. [DOI] [PubMed] [Google Scholar]
  39. Smith J. J., Rücknagel K. P., Schierhorn A., Tang J., Nemeth A., Linder M., Herschman H. R., Wahle E. Unusual sites of arginine methylation in Poly(A)-binding protein II and in vitro methylation by protein arginine methyltransferases PRMT1 and PRMT3. J Biol Chem. 1999 May 7;274(19):13229–13234. doi: 10.1074/jbc.274.19.13229. [DOI] [PubMed] [Google Scholar]
  40. Sparks A. B., Hoffman N. G., McConnell S. J., Fowlkes D. M., Kay B. K. Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins. Nat Biotechnol. 1996 Jun;14(6):741–744. doi: 10.1038/nbt0696-741. [DOI] [PubMed] [Google Scholar]
  41. Tang J., Frankel A., Cook R. J., Kim S., Paik W. K., Williams K. R., Clarke S., Herschman H. R. PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem. 2000 Mar 17;275(11):7723–7730. doi: 10.1074/jbc.275.11.7723. [DOI] [PubMed] [Google Scholar]
  42. Tang J., Gary J. D., Clarke S., Herschman H. R. PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem. 1998 Jul 3;273(27):16935–16945. doi: 10.1074/jbc.273.27.16935. [DOI] [PubMed] [Google Scholar]
  43. Tang J., Kao P. N., Herschman H. R. Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem. 2000 Jun 30;275(26):19866–19876. doi: 10.1074/jbc.M000023200. [DOI] [PubMed] [Google Scholar]
  44. Williams K. R., Stone K. L., LoPresti M. B., Merrill B. M., Planck S. R. Amino acid sequence of the UP1 calf thymus helix-destabilizing protein and its homology to an analogous protein from mouse myeloma. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5666–5670. doi: 10.1073/pnas.82.17.5666. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES