Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):325–333. doi: 10.1042/0264-6021:3580325

Suicide inactivation of xanthine oxidoreductase during reduction of inorganic nitrite to nitric oxide.

B L Godber 1, J J Doel 1, T A Goult 1, R Eisenthal 1, R Harrison 1
PMCID: PMC1222064  PMID: 11513730

Abstract

Xanthine oxidoreductase (XOR) is progressively inactivated while catalysing the reduction of inorganic nitrite to NO by xanthine. Inactivation results from conversion of the enzyme into its desulpho-form. The rate of inactivation increases with nitrite concentration. Similar behaviour was shown when NADH replaced xanthine as reducing substrate. A kinetic model is proposed incorporating a 'suicide' inactivation involving an enzyme-substrate (product) complex, rather than inactivation by free NO. The model provides a good fit to progress curves of the reaction of xanthine or NADH with nitrite in the presence of the oxidase or dehydrogenase forms of the enzyme. Inorganic nitrate, like nitrite, was shown to be reduced at the molybdenum site of XOR. With xanthine as reducing substrate, nitrite was produced in essentially a 1:1 stoichiometric ratio with respect to urate. Unlike the case of nitrite, the enzyme was not significantly inactivated, implying that inactivation during nitrite reduction depends on the presence of nascent NO in its enzyme complex.

Full Text

The Full Text of this article is available as a PDF (184.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike T., Ando M., Oda T., Doi T., Ijiri S., Araki S., Maeda H. Dependence on O2- generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest. 1990 Mar;85(3):739–745. doi: 10.1172/JCI114499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asahi M., Fujii J., Suzuki K., Seo H. G., Kuzuya T., Hori M., Tada M., Fujii S., Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J Biol Chem. 1995 Sep 8;270(36):21035–21039. doi: 10.1074/jbc.270.36.21035. [DOI] [PubMed] [Google Scholar]
  3. Beckman J. S., Parks D. A., Pearson J. D., Marshall P. A., Freeman B. A. A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues. Free Radic Biol Med. 1989;6(6):607–615. doi: 10.1016/0891-5849(89)90068-3. [DOI] [PubMed] [Google Scholar]
  4. Bordas J., Bray R. C., Garner C. D., Gutteridge S., Hasnain S. S. X-ray absorption spectroscopy of xanthine oxidase. The molybdenum centres of the functional and the desulpho forms. Biochem J. 1980 Nov 1;191(2):499–508. doi: 10.1042/bj1910499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown A. M., Benboubetra M., Ellison M., Powell D., Reckless J. D., Harrison R. Molecular activation-deactivation of xanthine oxidase in human milk. Biochim Biophys Acta. 1995 Oct 19;1245(2):248–254. doi: 10.1016/0304-4165(95)00093-q. [DOI] [PubMed] [Google Scholar]
  6. Brown G. C., Cooper C. E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994 Dec 19;356(2-3):295–298. doi: 10.1016/0014-5793(94)01290-3. [DOI] [PubMed] [Google Scholar]
  7. Cleeter M. W., Cooper J. M., Darley-Usmar V. M., Moncada S., Schapira A. H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994 May 23;345(1):50–54. doi: 10.1016/0014-5793(94)00424-2. [DOI] [PubMed] [Google Scholar]
  8. Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974 Jan;137(1):143–144. doi: 10.1042/bj1370143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cote C. G., Yu F. S., Zulueta J. J., Vosatka R. J., Hassoun P. M. Regulation of intracellular xanthine oxidase by endothelial-derived nitric oxide. Am J Physiol. 1996 Nov;271(5 Pt 1):L869–L874. doi: 10.1152/ajplung.1996.271.5.L869. [DOI] [PubMed] [Google Scholar]
  10. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doel J. J., Godber B. L., Eisenthal R., Harrison R. Reduction of organic nitrates catalysed by xanthine oxidoreductase under anaerobic conditions. Biochim Biophys Acta. 2001 Jul 2;1527(1-2):81–87. doi: 10.1016/s0304-4165(01)00148-9. [DOI] [PubMed] [Google Scholar]
  12. Doel J. J., Godber B. L., Goult T. A., Eisenthal R., Harrison R. Reduction of organic nitrites to nitric oxide catalyzed by xanthine oxidase: possible role in metabolism of nitrovasodilators. Biochem Biophys Res Commun. 2000 Apr 21;270(3):880–885. doi: 10.1006/bbrc.2000.2534. [DOI] [PubMed] [Google Scholar]
  13. Fujii H., Ichimori K., Hoshiai K., Nakazawa H. Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem. 1997 Dec 26;272(52):32773–32778. doi: 10.1074/jbc.272.52.32773. [DOI] [PubMed] [Google Scholar]
  14. Fukahori M., Ichimori K., Ishida H., Nakagawa H., Okino H. Nitric oxide reversibly suppresses xanthine oxidase activity. Free Radic Res. 1994 Sep;21(4):203–212. doi: 10.3109/10715769409056572. [DOI] [PubMed] [Google Scholar]
  15. Galley H. F., Davies M. J., Webster N. R. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome. Crit Care Med. 1996 Oct;24(10):1649–1653. doi: 10.1097/00003246-199610000-00008. [DOI] [PubMed] [Google Scholar]
  16. Gardner P. R., Costantino G., Szabó C., Salzman A. L. Nitric oxide sensitivity of the aconitases. J Biol Chem. 1997 Oct 3;272(40):25071–25076. doi: 10.1074/jbc.272.40.25071. [DOI] [PubMed] [Google Scholar]
  17. Godber B. L., Doel J. J., Durgan J., Eisenthal R., Harrison R. A new route to peroxynitrite: a role for xanthine oxidoreductase. FEBS Lett. 2000 Jun 16;475(2):93–96. doi: 10.1016/s0014-5793(00)01639-2. [DOI] [PubMed] [Google Scholar]
  18. Godber B. L., Doel J. J., Sapkota G. P., Blake D. R., Stevens C. R., Eisenthal R., Harrison R. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem. 2000 Mar 17;275(11):7757–7763. doi: 10.1074/jbc.275.11.7757. [DOI] [PubMed] [Google Scholar]
  19. Godber B., Sanders S., Harrison R., Eisenthal R., Bray R. C. > or = 95% of xanthine oxidase in human milk is present as the demolybdo form, lacking molybdopterin. Biochem Soc Trans. 1997 Aug;25(3):519S–519S. doi: 10.1042/bst025519s. [DOI] [PubMed] [Google Scholar]
  20. Harrison R. Human xanthine oxidoreductase: in search of a function. Biochem Soc Trans. 1997 Aug;25(3):786–791. doi: 10.1042/bst0250786. [DOI] [PubMed] [Google Scholar]
  21. Hart L. I., McGartoll M. A., Chapman H. R., Bray R. C. The composition of milk xanthine oxidase. Biochem J. 1970 Mar;116(5):851–864. doi: 10.1042/bj1160851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hassoun P. M., Yu F. S., Zulueta J. J., White A. C., Lanzillo J. J. Effect of nitric oxide and cell redox status on the regulation of endothelial cell xanthine dehydrogenase. Am J Physiol. 1995 May;268(5 Pt 1):L809–L817. doi: 10.1152/ajplung.1995.268.5.L809. [DOI] [PubMed] [Google Scholar]
  23. Hille R., Nishino T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 1995 Aug;9(11):995–1003. [PubMed] [Google Scholar]
  24. Hille Russ. The Mononuclear Molybdenum Enzymes. Chem Rev. 1996 Nov 7;96(7):2757–2816. doi: 10.1021/cr950061t. [DOI] [PubMed] [Google Scholar]
  25. Houston M., Chumley P., Radi R., Rubbo H., Freeman B. A. Xanthine oxidase reaction with nitric oxide and peroxynitrite. Arch Biochem Biophys. 1998 Jul 1;355(1):1–8. doi: 10.1006/abbi.1998.0675. [DOI] [PubMed] [Google Scholar]
  26. Ichimori K., Fukahori M., Nakazawa H., Okamoto K., Nishino T. Inhibition of xanthine oxidase and xanthine dehydrogenase by nitric oxide. Nitric oxide converts reduced xanthine-oxidizing enzymes into the desulfo-type inactive form. J Biol Chem. 1999 Mar 19;274(12):7763–7768. doi: 10.1074/jbc.274.12.7763. [DOI] [PubMed] [Google Scholar]
  27. Iizuka T., Sasaki M., Oishi K., Uemura S., Koike M., Shinozaki M. Non-enzymatic nitric oxide generation in the stomachs of breastfed neonates. Acta Paediatr. 1999 Oct;88(10):1053–1055. doi: 10.1080/08035259950168063. [DOI] [PubMed] [Google Scholar]
  28. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee C. I., Liu X., Zweier J. L. Regulation of xanthine oxidase by nitric oxide and peroxynitrite. J Biol Chem. 2000 Mar 31;275(13):9369–9376. doi: 10.1074/jbc.275.13.9369. [DOI] [PubMed] [Google Scholar]
  30. Massey V., Edmondson D. On the mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem. 1970 Dec 25;245(24):6595–6598. [PubMed] [Google Scholar]
  31. Massey V., Harris C. M. Milk xanthine oxidoreductase: the first one hundred years. Biochem Soc Trans. 1997 Aug;25(3):750–755. doi: 10.1042/bst0250750. [DOI] [PubMed] [Google Scholar]
  32. Massey V., Komai H., Palmer G., Elion G. B. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem. 1970 Jun 10;245(11):2837–2844. [PubMed] [Google Scholar]
  33. Millar T. M., Stevens C. R., Benjamin N., Eisenthal R., Harrison R., Blake D. R. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 1998 May 8;427(2):225–228. doi: 10.1016/s0014-5793(98)00430-x. [DOI] [PubMed] [Google Scholar]
  34. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  35. Nishino T. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. J Biochem. 1994 Jul;116(1):1–6. doi: 10.1093/oxfordjournals.jbchem.a124480. [DOI] [PubMed] [Google Scholar]
  36. O'Donnell V. B., Smith G. C., Jones O. T. Involvement of phenyl radicals in iodonium inhibition of flavoenzymes. Mol Pharmacol. 1994 Oct;46(4):778–785. [PubMed] [Google Scholar]
  37. Patton S., Keenan T. W. The milk fat globule membrane. Biochim Biophys Acta. 1975 Oct 31;415(3):273–309. doi: 10.1016/0304-4157(75)90011-8. [DOI] [PubMed] [Google Scholar]
  38. Rinaldo J. E., Clark M., Parinello J., Shepherd V. L. Nitric oxide inactivates xanthine dehydrogenase and xanthine oxidase in interferon-gamma-stimulated macrophages. Am J Respir Cell Mol Biol. 1994 Nov;11(5):625–630. doi: 10.1165/ajrcmb.11.5.7524568. [DOI] [PubMed] [Google Scholar]
  39. Stamler J. S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994 Sep 23;78(6):931–936. doi: 10.1016/0092-8674(94)90269-0. [DOI] [PubMed] [Google Scholar]
  40. Stevens C. R., Millar T. M., Clinch J. G., Kanczler J. M., Bodamyali T., Blake D. R. Antibacterial properties of xanthine oxidase in human milk. Lancet. 2000 Sep 2;356(9232):829–830. doi: 10.1016/s0140-6736(00)02660-x. [DOI] [PubMed] [Google Scholar]
  41. Wang P., Zweier J. L. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem. 1996 Nov 15;271(46):29223–29230. doi: 10.1074/jbc.271.46.29223. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES