Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):349–358. doi: 10.1042/0264-6021:3580349

Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D.

M Y Vyssokikh 1, A Katz 1, A Rueck 1, C Wuensch 1, A Dörner 1, D B Zorov 1, D Brdiczka 1
PMCID: PMC1222067  PMID: 11513733

Abstract

Different isoforms of the adenine nucleotide translocase (ANT) are expressed in a tissue-specific manner. It was assumed that ANT-1 and ANT-2 co-exist in every single mitochondrion and might be differently distributed within the membrane structures that constitute the peripheral inner membrane or the crista membrane. To discriminate between ANT originating from peripheral or from cristal inner membranes we made use of the fact that complexes between porin, the outer-membrane pore protein, and the ANT can be generated. Such complexes between porin and the ANT in the peripheral inner membrane were induced in rat heart mitochondria and isolated from rat brain and kidney. Using ANT-isotype-specific antibodies and sequence analysis of the N-terminal end, it was discovered that the peripheral inner membrane contained ANT-1 and ANT-2, whereas the cristal membrane contained exclusively ANT-2. Cyclophilin was co-purified with the porin-ANT complexes, whereas it was absent in the crista-derived ANT. This suggested that ANT-1 might have a higher affinity for cyclophilin. This specific intra-mitochondrial distribution of the two ANT isotypes and cyclophilin D suggests specific functions of the peripheral and crista-forming parts of the inner membrane and the two ANT isotypes therein.

Full Text

The Full Text of this article is available as a PDF (317.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams V., Bosch W., Schlegel J., Wallimann T., Brdiczka D. Further characterization of contact sites from mitochondria of different tissues: topology of peripheral kinases. Biochim Biophys Acta. 1989 Jun 6;981(2):213–225. doi: 10.1016/0005-2736(89)90031-x. [DOI] [PubMed] [Google Scholar]
  2. Bauer M. K., Schubert A., Rocks O., Grimm S. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J Cell Biol. 1999 Dec 27;147(7):1493–1502. doi: 10.1083/jcb.147.7.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beutner G., Ruck A., Riede B., Welte W., Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett. 1996 Nov 4;396(2-3):189–195. doi: 10.1016/0014-5793(96)01092-7. [DOI] [PubMed] [Google Scholar]
  4. Beutner G., Rück A., Riede B., Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta. 1998 Jan 5;1368(1):7–18. doi: 10.1016/s0005-2736(97)00175-2. [DOI] [PubMed] [Google Scholar]
  5. Brdiczka D., Dölken G., Krebs W., Hofmann D. The inner boundary membrane of mitochondria. Localization and biochemical characterization, possible functions in biogenesis and metabolism. Hoppe Seylers Z Physiol Chem. 1974 Jun;355(6):731–743. doi: 10.1515/bchm2.1974.355.1.731. [DOI] [PubMed] [Google Scholar]
  6. Broekemeier K. M., Dempsey M. E., Pfeiffer D. R. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem. 1989 May 15;264(14):7826–7830. [PubMed] [Google Scholar]
  7. Brustovetsky N., Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry. 1996 Jul 2;35(26):8483–8488. doi: 10.1021/bi960833v. [DOI] [PubMed] [Google Scholar]
  8. Bühler S., Michels J., Wendt S., Rück A., Brdiczka D., Welte W., Przybylski M. Mass spectrometric mapping of ion channel proteins (porins) and identification of their supramolecular membrane assembly. Proteins. 1998;Suppl 2:63–73. doi: 10.1002/(sici)1097-0134(1998)33:2+<63::aid-prot8>3.3.co;2-9. [DOI] [PubMed] [Google Scholar]
  9. Cozens A. L., Runswick M. J., Walker J. E. DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J Mol Biol. 1989 Mar 20;206(2):261–280. doi: 10.1016/0022-2836(89)90477-4. [DOI] [PubMed] [Google Scholar]
  10. Crompton M., Ellinger H., Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988 Oct 1;255(1):357–360. [PMC free article] [PubMed] [Google Scholar]
  11. Crompton M., Virji S., Ward J. M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem. 1998 Dec 1;258(2):729–735. doi: 10.1046/j.1432-1327.1998.2580729.x. [DOI] [PubMed] [Google Scholar]
  12. Daems W. T., Wisse E. Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria. J Ultrastruct Res. 1966 Sep;16(1):123–140. doi: 10.1016/s0022-5320(66)80027-8. [DOI] [PubMed] [Google Scholar]
  13. Dierks T., Salentin A., Heberger C., Krämer R. The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents. Biochim Biophys Acta. 1990 Oct 19;1028(3):268–280. doi: 10.1016/0005-2736(90)90176-o. [DOI] [PubMed] [Google Scholar]
  14. Doerner A., Pauschinger M., Badorff A., Noutsias M., Giessen S., Schulze K., Bilger J., Rauch U., Schultheiss H. P. Tissue-specific transcription pattern of the adenine nucleotide translocase isoforms in humans. FEBS Lett. 1997 Sep 8;414(2):258–262. doi: 10.1016/s0014-5793(97)01000-4. [DOI] [PubMed] [Google Scholar]
  15. Du C., Fang M., Li Y., Li L., Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000 Jul 7;102(1):33–42. doi: 10.1016/s0092-8674(00)00008-8. [DOI] [PubMed] [Google Scholar]
  16. Dörner A., Schulze K., Rauch U., Schultheiss H. P. Adenine nucleotide translocator in dilated cardiomyopathy: pathophysiological alterations in expression and function. Mol Cell Biochem. 1997 Sep;174(1-2):261–269. [PubMed] [Google Scholar]
  17. Graham B. H., Waymire K. G., Cottrell B., Trounce I. A., MacGregor G. R., Wallace D. C. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet. 1997 Jul;16(3):226–234. doi: 10.1038/ng0797-226. [DOI] [PubMed] [Google Scholar]
  18. Halestrap A. P., Davidson A. M. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990 May 15;268(1):153–160. doi: 10.1042/bj2680153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Houldsworth J., Attardi G. Two distinct genes for ADP/ATP translocase are expressed at the mRNA level in adult human liver. Proc Natl Acad Sci U S A. 1988 Jan;85(2):377–381. doi: 10.1073/pnas.85.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kluck R. M., Bossy-Wetzel E., Green D. R., Newmeyer D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997 Feb 21;275(5303):1132–1136. doi: 10.1126/science.275.5303.1132. [DOI] [PubMed] [Google Scholar]
  21. Kottke M., Wallimann T., Brdiczka D. Dual electron microscopic localization of mitochondrial creatine kinase in brain mitochondria. Biochem Med Metab Biol. 1994 Apr;51(2):105–117. doi: 10.1006/bmmb.1994.1015. [DOI] [PubMed] [Google Scholar]
  22. Kuznetsov A. V., Saks V. A. Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their molar stoichiometry. Biochem Biophys Res Commun. 1986 Jan 14;134(1):359–366. doi: 10.1016/0006-291x(86)90571-1. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
  26. Mannella C. A., Marko M., Buttle K. Reconsidering mitochondrial structure: new views of an old organelle. Trends Biochem Sci. 1997 Feb;22(2):37–38. doi: 10.1016/s0968-0004(96)30050-9. [DOI] [PubMed] [Google Scholar]
  27. McGuinness O., Yafei N., Costi A., Crompton M. The presence of two classes of high-affinity cyclosporin A binding sites in mitochondria. Evidence that the minor component is involved in the opening of an inner-membrane Ca(2+)-dependent pore. Eur J Biochem. 1990 Dec 12;194(2):671–679. doi: 10.1111/j.1432-1033.1990.tb15667.x. [DOI] [PubMed] [Google Scholar]
  28. Nicolli A., Basso E., Petronilli V., Wenger R. M., Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 1996 Jan 26;271(4):2185–2192. doi: 10.1074/jbc.271.4.2185. [DOI] [PubMed] [Google Scholar]
  29. Ohlendieck K., Riesinger I., Adams V., Krause J., Brdiczka D. Enrichment and biochemical characterization of boundary membrane contact sites from rat-liver mitochondria. Biochim Biophys Acta. 1986 Sep 11;860(3):672–689. doi: 10.1016/0005-2736(86)90567-5. [DOI] [PubMed] [Google Scholar]
  30. Perkins G., Renken C., Martone M. E., Young S. J., Ellisman M., Frey T. Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol. 1997 Aug;119(3):260–272. doi: 10.1006/jsbi.1997.3885. [DOI] [PubMed] [Google Scholar]
  31. Pisano J. J., Bronzert T. J., Brewer H. B., Jr Advances in the gas chromatographic analysis of amino acid phenyl- and methylthiohydantoins. Anal Biochem. 1972 Jan;45(1):43–59. doi: 10.1016/0003-2697(72)90006-1. [DOI] [PubMed] [Google Scholar]
  32. Riccio P., Aquila H., Klingenberg M. Purification of the carboxy-atractylate binding protein from mitochondria. FEBS Lett. 1975 Aug 1;56(1):133–138. doi: 10.1016/0014-5793(75)80127-x. [DOI] [PubMed] [Google Scholar]
  33. Rott R., Nelson N. Purification and immunological properties of proton-ATPase complexes from yeast and rat liver mitochondria. J Biol Chem. 1981 Sep 10;256(17):9224–9228. [PubMed] [Google Scholar]
  34. Rück A., Dolder M., Wallimann T., Brdiczka D. Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett. 1998 Apr 10;426(1):97–101. doi: 10.1016/s0014-5793(98)00317-2. [DOI] [PubMed] [Google Scholar]
  35. Schutkowski M., Wöllner S., Fischer G. Inhibition of peptidyl-prolyl cis/trans isomerase activity by substrate analog structures: thioxo tetrapeptide-4-nitroanilides. Biochemistry. 1995 Oct 10;34(40):13016–13026. doi: 10.1021/bi00040a012. [DOI] [PubMed] [Google Scholar]
  36. Shimizu S., Shinohara Y., Tsujimoto Y. Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene. 2000 Sep 7;19(38):4309–4318. doi: 10.1038/sj.onc.1203788. [DOI] [PubMed] [Google Scholar]
  37. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stepien G., Torroni A., Chung A. B., Hodge J. A., Wallace D. C. Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem. 1992 Jul 25;267(21):14592–14597. [PubMed] [Google Scholar]
  39. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
  40. Tikhonova I. M., Andreyev AYu, Antonenko YuN, Kaulen A. D., Komrakov AYu, Skulachev V. P. Ion permeability induced in artificial membranes by the ATP/ADP antiporter. FEBS Lett. 1994 Jan 17;337(3):231–234. doi: 10.1016/0014-5793(94)80197-5. [DOI] [PubMed] [Google Scholar]
  41. Verhagen A. M., Ekert P. G., Pakusch M., Silke J., Connolly L. M., Reid G. E., Moritz R. L., Simpson R. J., Vaux D. L. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000 Jul 7;102(1):43–53. doi: 10.1016/s0092-8674(00)00009-x. [DOI] [PubMed] [Google Scholar]
  42. Woodfield K., Rück A., Brdiczka D., Halestrap A. P. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998 Dec 1;336(Pt 2):287–290. doi: 10.1042/bj3360287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yang J., Liu X., Bhalla K., Kim C. N., Ibrado A. M., Cai J., Peng T. I., Jones D. P., Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997 Feb 21;275(5303):1129–1132. doi: 10.1126/science.275.5303.1129. [DOI] [PubMed] [Google Scholar]
  44. Zorov D. B., Filburn C. R., Klotz L. O., Zweier J. L., Sollott S. J. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000 Oct 2;192(7):1001–1014. doi: 10.1084/jem.192.7.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES