Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):389–397. doi: 10.1042/0264-6021:3580389

Independent and synergistic interaction of retinal G-protein subunits with bovine rhodopsin measured by surface plasmon resonance.

W A Clark 1, X Jian 1, L Chen 1, J K Northup 1
PMCID: PMC1222071  PMID: 11513737

Abstract

We have used surface plasmon resonance (SPR) measurements for the kinetic analysis of G-protein-receptor interaction monitored in real time. Functionally active rhodopsin was immobilized on an SPR surface, with full retention of biochemical specific activity for catalysis of nucleotide exchange on the retinal G-protein alpha subunit, via binding to immobilized concanavalin A. The binding interactions of bovine retinal alpha(t) and beta(1)gamma(1) subunits with rhodopsin measured by SPR were profoundly synergistic. Synergistic binding of the retinal G-protein subunits to rhodopsin was not observed for guanosine 5'-[gamma-thio]triphosphate-bound Galpha(t), nor was binding observed with squid retinal Galpha(q), which is not activated by bovine rhodopsin. The binding affinity (336+/-171 nM; mean value+/-S.D.) of retinal betagamma for rhodopsin in the presence of retinal alpha subunit measured by SPR confirmed the apparent affinity of 254 nM determined previously by nucleotide exchange assays. Binding of beta(1)gamma(1), beta(1)gamma(2), and beta(1)gamma(8-olf) dimers to rhodopsin, independently of the alpha subunit, was readily observable by SPR. Further, these dimers, differing only in their gamma subunit compositions, displayed markedly distinct binding affinities and kinetics. The beta(1)gamma(2) dimer bound with a kinetically determined K(d) of 13+/-3 nM, a value nearly identical with the biochemically determined K(1/2) of 10 nM. The physiologically appropriate beta(1)gamma(1) displayed rapid association and dissociation kinetics, whereas the other beta(1)gamma dimers dissociated at a rate less than 1/100 as fast. Thus rhodopsin interaction with its native signalling partners is both rapid and transient, whereas the interaction of rhodopsin with heterologous Gbetagamma dimers is markedly prolonged. These results suggest that the duration of a G-protein-coupled receptor signalling event is an intrinsic property of the G-protein coupling partners; in particular, the betagamma dimer.

Full Text

The Full Text of this article is available as a PDF (166.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano T., Morishita R., Matsuda T., Fukada Y., Yoshizawa T., Kato K. Purification of four forms of the beta gamma subunit complex of G proteins containing different gamma subunits. J Biol Chem. 1993 Sep 25;268(27):20512–20519. [PubMed] [Google Scholar]
  2. Cerione R. A., Codina J., Benovic J. L., Lefkowitz R. J., Birnbaumer L., Caron M. G. The mammalian beta 2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry. 1984 Sep 25;23(20):4519–4525. doi: 10.1021/bi00315a003. [DOI] [PubMed] [Google Scholar]
  3. Clapham D. E., Neer E. J. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol. 1997;37:167–203. doi: 10.1146/annurev.pharmtox.37.1.167. [DOI] [PubMed] [Google Scholar]
  4. Degtyarev M. Y., Spiegel A. M., Jones T. L. Palmitoylation of a G protein alpha i subunit requires membrane localization not myristoylation. J Biol Chem. 1994 Dec 9;269(49):30898–30903. [PubMed] [Google Scholar]
  5. Evans T., Fawzi A., Fraser E. D., Brown M. L., Northup J. K. Purification of a beta 35 form of the beta gamma complex common to G-proteins from human placental membranes. J Biol Chem. 1987 Jan 5;262(1):176–181. [PubMed] [Google Scholar]
  6. Fawzi A. B., Fay D. S., Murphy E. A., Tamir H., Erdos J. J., Northup J. K. Rhodopsin and the retinal G-protein distinguish among G-protein beta gamma subunit forms. J Biol Chem. 1991 Jul 5;266(19):12194–12200. [PubMed] [Google Scholar]
  7. Figler R. A., Graber S. G., Lindorfer M. A., Yasuda H., Linden J., Garrison J. C. Reconstitution of recombinant bovine A1 adenosine receptors in Sf9 cell membranes with recombinant G proteins of defined composition. Mol Pharmacol. 1996 Dec;50(6):1587–1595. [PubMed] [Google Scholar]
  8. Figler R. A., Lindorfer M. A., Graber S. G., Garrison J. C., Linden J. Reconstitution of bovine A1 adenosine receptors and G proteins in phospholipid vesicles: betagamma-subunit composition influences guanine nucleotide exchange and agonist binding. Biochemistry. 1997 Dec 23;36(51):16288–16299. doi: 10.1021/bi972000q. [DOI] [PubMed] [Google Scholar]
  9. Florio V. A., Sternweis P. C. Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J Biol Chem. 1985 Mar 25;260(6):3477–3483. [PubMed] [Google Scholar]
  10. Fung B. K. Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. J Biol Chem. 1983 Sep 10;258(17):10495–10502. [PubMed] [Google Scholar]
  11. Fägerstam L. G., Frostell A., Karlsson R., Kullman M., Larsson A., Malmqvist M., Butt H. Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping. J Mol Recognit. 1990 Oct-Dec;3(5-6):208–214. doi: 10.1002/jmr.300030507. [DOI] [PubMed] [Google Scholar]
  12. Gautam N., Downes G. B., Yan K., Kisselev O. The G-protein betagamma complex. Cell Signal. 1998 Jul;10(7):447–455. doi: 10.1016/s0898-6568(98)00006-0. [DOI] [PubMed] [Google Scholar]
  13. Hartman J. L., 4th, Northup J. K. Functional reconstitution in situ of 5-hydroxytryptamine2c (5HT2c) receptors with alphaq and inverse agonism of 5HT2c receptor antagonists. J Biol Chem. 1996 Sep 13;271(37):22591–22597. doi: 10.1074/jbc.271.37.22591. [DOI] [PubMed] [Google Scholar]
  14. Hekman M., Holzhöfer A., Gierschik P., Im M. J., Jakobs K. H., Pfeuffer T., Helmreich E. J. Regulation of signal transfer from beta 1-adrenoceptor to adenylate cyclase by beta gamma subunits in a reconstituted system. Eur J Biochem. 1987 Dec 1;169(2):431–439. doi: 10.1111/j.1432-1033.1987.tb13630.x. [DOI] [PubMed] [Google Scholar]
  15. Hellmich M. R., Battey J. F., Northup J. K. Selective reconstitution of gastrin-releasing peptide receptor with G alpha q. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):751–756. doi: 10.1073/pnas.94.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heyse S., Ernst O. P., Dienes Z., Hofmann K. P., Vogel H. Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance. Biochemistry. 1998 Jan 13;37(2):507–522. doi: 10.1021/bi971564r. [DOI] [PubMed] [Google Scholar]
  17. Ho Y. K., Fung B. K. Characterization of transducin from bovine retinal rod outer segments. The role of sulfhydryl groups. J Biol Chem. 1984 May 25;259(10):6694–6699. [PubMed] [Google Scholar]
  18. Iñiguez-Lluhi J. A., Simon M. I., Robishaw J. D., Gilman A. G. G protein beta gamma subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of gamma. J Biol Chem. 1992 Nov 15;267(32):23409–23417. [PubMed] [Google Scholar]
  19. Jian X., Sainz E., Clark W. A., Jensen R. T., Battey J. F., Northup J. K. The bombesin receptor subtypes have distinct G protein specificities. J Biol Chem. 1999 Apr 23;274(17):11573–11581. doi: 10.1074/jbc.274.17.11573. [DOI] [PubMed] [Google Scholar]
  20. Kisselev O. G., Meyer C. K., Heck M., Ernst O. P., Hofmann K. P. Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4898–4903. doi: 10.1073/pnas.96.9.4898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kisselev O., Ermolaeva M., Gautam N. Efficient interaction with a receptor requires a specific type of prenyl group on the G protein gamma subunit. J Biol Chem. 1995 Oct 27;270(43):25356–25358. doi: 10.1074/jbc.270.43.25356. [DOI] [PubMed] [Google Scholar]
  22. Kraft T. W., Schneeweis D. M., Schnapf J. L. Visual transduction in human rod photoreceptors. J Physiol. 1993 May;464:747–765. doi: 10.1113/jphysiol.1993.sp019661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matsuda T., Hashimoto Y., Ueda H., Asano T., Matsuura Y., Doi T., Takao T., Shimonishi Y., Fukada Y. Specific isoprenyl group linked to transducin gamma-subunit is a determinant of its unique signaling properties among G-proteins. Biochemistry. 1998 Jul 7;37(27):9843–9850. doi: 10.1021/bi973194c. [DOI] [PubMed] [Google Scholar]
  24. Muntz K. H., Sternweis P. C., Gilman A. G., Mumby S. M. Influence of gamma subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes. Mol Biol Cell. 1992 Jan;3(1):49–61. doi: 10.1091/mbc.3.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Northup J. K., Smigel M. D., Gilman A. G. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding. J Biol Chem. 1982 Oct 10;257(19):11416–11423. [PubMed] [Google Scholar]
  26. Papermaster D. S., Dreyer W. J. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry. 1974 May 21;13(11):2438–2444. doi: 10.1021/bi00708a031. [DOI] [PubMed] [Google Scholar]
  27. Parker E. M., Kameyama K., Higashijima T., Ross E. M. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J Biol Chem. 1991 Jan 5;266(1):519–527. [PubMed] [Google Scholar]
  28. Phillips W. J., Wong S. C., Cerione R. A. Rhodopsin/transducin interactions. II. Influence of the transducin-beta gamma subunit complex on the coupling of the transducin-alpha subunit to rhodopsin. J Biol Chem. 1992 Aug 25;267(24):17040–17046. [PubMed] [Google Scholar]
  29. Richardson M., Robishaw J. D. The alpha2A-adrenergic receptor discriminates between Gi heterotrimers of different betagamma subunit composition in Sf9 insect cell membranes. J Biol Chem. 1999 May 7;274(19):13525–13533. doi: 10.1074/jbc.274.19.13525. [DOI] [PubMed] [Google Scholar]
  30. Salamon Z., Wang Y., Soulages J. L., Brown M. F., Tollin G. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films. Biophys J. 1996 Jul;71(1):283–294. doi: 10.1016/S0006-3495(96)79224-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  32. Slepak V. Z. Application of surface plasmon resonance for analysis of protein-protein interactions in the G protein-mediated signal transduction pathway. J Mol Recognit. 2000 Jan-Feb;13(1):20–26. doi: 10.1002/(SICI)1099-1352(200001/02)13:1<20::AID-JMR485>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  33. Tamir H., Fawzi A. B., Tamir A., Evans T., Northup J. K. G-protein beta gamma forms: identity of beta and diversity of gamma subunits. Biochemistry. 1991 Apr 23;30(16):3929–3936. doi: 10.1021/bi00230a018. [DOI] [PubMed] [Google Scholar]
  34. Ueda N., Iñiguez-Lluhi J. A., Lee E., Smrcka A. V., Robishaw J. D., Gilman A. G. G protein beta gamma subunits. Simplified purification and properties of novel isoforms. J Biol Chem. 1994 Feb 11;269(6):4388–4395. [PubMed] [Google Scholar]
  35. Vuong T. M., Chabre M., Stryer L. Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Nature. 1984 Oct 18;311(5987):659–661. doi: 10.1038/311659a0. [DOI] [PubMed] [Google Scholar]
  36. Wildman D. E., Tamir H., Leberer E., Northup J. K., Dennis M. Prenyl modification of guanine nucleotide regulatory protein gamma 2 subunits is not required for interaction with the transducin alpha subunit or rhodopsin. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):794–798. doi: 10.1073/pnas.90.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wilkie T. M., Gilbert D. J., Olsen A. S., Chen X. N., Amatruda T. T., Korenberg J. R., Trask B. J., de Jong P., Reed R. R., Simon M. I. Evolution of the mammalian G protein alpha subunit multigene family. Nat Genet. 1992 May;1(2):85–91. doi: 10.1038/ng0592-85. [DOI] [PubMed] [Google Scholar]
  38. Yamazaki A., Tatsumi M., Bitensky M. W. Purification of rod outer segment GTP-binding protein subunits and cGMP phosphodiesterase by single-step column chromatography. Methods Enzymol. 1988;159:702–710. doi: 10.1016/0076-6879(88)59065-1. [DOI] [PubMed] [Google Scholar]
  39. Yamazaki A., Tatsumi M., Torney D. C., Bitensky M. W. The GTP-binding protein of rod outer segments. I. Role of each subunit in the GTP hydrolytic cycle. J Biol Chem. 1987 Jul 5;262(19):9316–9323. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES