Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):423–430. doi: 10.1042/0264-6021:3580423

Glycosylation by Pichia pastoris decreases the affinity of a family 2a carbohydrate-binding module from Cellulomonas fimi: a functional and mutational analysis.

A B Boraston 1, R A Warren 1, D G Kilburn 1
PMCID: PMC1222075  PMID: 11513741

Abstract

When produced by Pichia pastoris, three of the five Asn-Xaa-Ser/Thr sequences (corresponding to Asn-24, Asn-73 and Asn-87) in the carbohydrate-binding module CBM2a of xylanase 10A from Cellulomonas fimi are glycosylated. The glycans are of the high-mannose type, ranging in size from GlcNAc(2)Man(8) to GlcNAc(2)Man(14). The N-linked glycans block the binding of CBM2a to cellulose. Analysis of mutants of CBM2a shows that glycans on Asn-24 decrease the association constant (K(a)) for the binding of CBM2a to bacterial microcrystalline cellulose approx. 10-fold, whereas glycans on Asn-87 destroy binding. The K(a) of a mutant of CBM2a lacking all three N-linked glycosylation sites is the same when the polypeptide is produced by either Escherichia coli or P. pastoris and is approx. half that of wild-type CBM2a produced by E. coli.

Full Text

The Full Text of this article is available as a PDF (191.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bretthauer R. K., Castellino F. J. Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem. 1999 Dec;30(Pt 3):193–200. [PubMed] [Google Scholar]
  2. Clare J. J., Rayment F. B., Ballantine S. P., Sreekrishna K., Romanos M. A. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (N Y) 1991 May;9(5):455–460. doi: 10.1038/nbt0591-455. [DOI] [PubMed] [Google Scholar]
  3. Creagh A. L., Ong E., Jervis E., Kilburn D. G., Haynes C. A. Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12229–12234. doi: 10.1073/pnas.93.22.12229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cregg J. M., Vedvick T. S., Raschke W. C. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y) 1993 Aug;11(8):905–910. doi: 10.1038/nbt0893-905. [DOI] [PubMed] [Google Scholar]
  5. Duman J. G., Miele R. G., Liang H., Grella D. K., Sim K. L., Castellino F. J., Bretthauer R. K. O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol Appl Biochem. 1998 Aug;28(Pt 1):39–45. [PubMed] [Google Scholar]
  6. Dwek R. A. Glycobiology: "towards understanding the function of sugars". Biochem Soc Trans. 1995 Feb;23(1):1–25. doi: 10.1042/bst0230001. [DOI] [PubMed] [Google Scholar]
  7. Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit Rev Biochem. 1984;16(1):21–49. doi: 10.3109/10409238409102805. [DOI] [PubMed] [Google Scholar]
  8. Gavel Y., von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990 Apr;3(5):433–442. doi: 10.1093/protein/3.5.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham R. W., Greenwood J. M., Warren R. A., Kilburn D. G., Trimbur D. E. The pTugA and pTugAS vectors for high-level expression of cloned genes in Escherichia coli. Gene. 1995 May 26;158(1):51–54. doi: 10.1016/0378-1119(95)00165-3. [DOI] [PubMed] [Google Scholar]
  10. Grinna L. S., Tschopp J. F. Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast. 1989 Mar-Apr;5(2):107–115. doi: 10.1002/yea.320050206. [DOI] [PubMed] [Google Scholar]
  11. Guarna M. M., Côté H. C., Amandoron E. A., MacGillivray R. T., Warren R. A., Kilburn D. G. Engineering factor X fusions for expression in Pichia pastoris. Ann N Y Acad Sci. 1996 Oct 12;799:397–400. doi: 10.1111/j.1749-6632.1996.tb33231.x. [DOI] [PubMed] [Google Scholar]
  12. Higgins D. R., Cregg J. M. Introduction to Pichia pastoris. Methods Mol Biol. 1998;103:1–15. doi: 10.1385/0-89603-421-6:1. [DOI] [PubMed] [Google Scholar]
  13. Lehle L. Protein glycosylation in yeast. Antonie Van Leeuwenhoek. 1992 Feb;61(2):133–134. doi: 10.1007/BF00580620. [DOI] [PubMed] [Google Scholar]
  14. Mach H., Middaugh C. R., Lewis R. V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem. 1992 Jan;200(1):74–80. doi: 10.1016/0003-2697(92)90279-g. [DOI] [PubMed] [Google Scholar]
  15. McLean B. W., Bray M. R., Boraston A. B., Gilkes N. R., Haynes C. A., Kilburn D. G. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng. 2000 Nov;13(11):801–809. doi: 10.1093/protein/13.11.801. [DOI] [PubMed] [Google Scholar]
  16. Miele R. G., Castellino F. J., Bretthauer R. K. Characterization of the acidic oligosaccharides assembled on the Pichia pastoris-expressed recombinant kringle 2 domain of human tissue-type plasminogen activator. Biotechnol Appl Biochem. 1997 Oct;26(Pt 2):79–83. [PubMed] [Google Scholar]
  17. Miele R. G., Nilsen S. L., Brito T., Bretthauer R. K., Castellino F. J. Glycosylation properties of the Pichia pastoris-expressed recombinant kringle 2 domain of tissue-type plasminogen activator. Biotechnol Appl Biochem. 1997 Apr;25(Pt 2):151–157. [PubMed] [Google Scholar]
  18. Plummer T. H., Jr, Tarentino A. L. Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology. 1991 Jun;1(3):257–263. doi: 10.1093/glycob/1.3.257. [DOI] [PubMed] [Google Scholar]
  19. Tanner W., Lehle L. Protein glycosylation in yeast. Biochim Biophys Acta. 1987 Apr 27;906(1):81–99. doi: 10.1016/0304-4157(87)90006-2. [DOI] [PubMed] [Google Scholar]
  20. Tarentino A. L., Quinones G., Schrader W. P., Changchien L. M., Plummer T. H., Jr Multiple endoglycosidase (Endo) F activities expressed by Flavobacterium meningosepticum. Endo F1: molecular cloning, primary sequence, and structural relationship to Endo H. J Biol Chem. 1992 Feb 25;267(6):3868–3872. [PubMed] [Google Scholar]
  21. Xu G. Y., Ong E., Gilkes N. R., Kilburn D. G., Muhandiram D. R., Harris-Brandts M., Carver J. P., Kay L. E., Harvey T. S. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry. 1995 May 30;34(21):6993–7009. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES