Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):447–455. doi: 10.1042/0264-6021:3580447

Subnuclear localization and mitotic phosphorylation of HIRA, the human homologue of Saccharomyces cerevisiae transcriptional regulators Hir1p/Hir2p.

F De Lucia 1, S Lorain 1, C Scamps 1, F Galisson 1, J MacHold 1, M Lipinski 1
PMCID: PMC1222078  PMID: 11513744

Abstract

The HIRA gene encodes a nuclear protein with histone-binding properties that have been conserved from yeast to humans. Hir1p and Hir2p, the two HIRA homologues in Saccharomyces cerevisiae, are transcriptional co-repressors whose action resides at the chromatin level and occurs in a cell-cycle-regulated fashion. In mammals, HIRA is an essential gene early during development, possibly through the control of specific gene-transcription programmes, but its exact function remains to be deciphered. Here we report on the subnuclear distribution and cell-cycle behaviour of the HIRA protein. Using both biochemical and immunofluorescence techniques, a minor fraction of HIRA was found tightly associated with the nuclear matrix, the material that remains after nuclease treatment and high-salt extraction. However, most HIRA molecules proved extractable. In non-synchronized cell populations, extraction from chromatin necessitated 300 mM NaCl whereas 150 mM was sufficient in mitotic cells. Immunofluorescence staining and microscopic examination of mitotic cells revealed HIRA as excluded from condensed chromosomes, confirming a lack of association with chromatin during mitosis. Western-blot analysis indicated that HIRA molecules were hyper-phosphorylated at this point in the cell cycle. Metabolic labelling and pulse-chase experiments characterized HIRA as a stable protein with a half-life of approx. 12 h. The mitotic phosphorylation of HIRA could provide the dividing cell with a way to retarget HIRA-containing multi-protein complexes to different chromatin regions in daughter compared with parental cells.

Full Text

The Full Text of this article is available as a PDF (222.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J. D., Yasui D. H., Niida H., Joh T., Loh D. Y., Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 2000 Mar 1;14(5):521–535. [PMC free article] [PubMed] [Google Scholar]
  2. Aravind L., Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 1998 Oct 1;26(19):4413–4421. doi: 10.1093/nar/26.19.4413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baskin Y. Mapping the cell's nucleus. Science. 1995 Jun 16;268(5217):1564–1565. doi: 10.1126/science.7777854. [DOI] [PubMed] [Google Scholar]
  4. Berezney R., Coffey D. S. Identification of a nuclear protein matrix. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1410–1417. doi: 10.1016/0006-291x(74)90355-6. [DOI] [PubMed] [Google Scholar]
  5. Berezney R., Coffey D. S. Nuclear protein matrix: association with newly synthesized DNA. Science. 1975 Jul 25;189(4199):291–293. doi: 10.1126/science.1145202. [DOI] [PubMed] [Google Scholar]
  6. Bourachot B., Yaniv M., Muchardt C. The activity of mammalian brm/SNF2alpha is dependent on a high-mobility-group protein I/Y-like DNA binding domain. Mol Cell Biol. 1999 Jun;19(6):3931–3939. doi: 10.1128/mcb.19.6.3931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bravo R., Macdonald-Bravo H. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J Cell Biol. 1987 Oct;105(4):1549–1554. doi: 10.1083/jcb.105.4.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cairns B. R., Schlichter A., Erdjument-Bromage H., Tempst P., Kornberg R. D., Winston F. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell. 1999 Nov;4(5):715–723. doi: 10.1016/s1097-2765(00)80382-2. [DOI] [PubMed] [Google Scholar]
  9. Capco D. G., Wan K. M., Penman S. The nuclear matrix: three-dimensional architecture and protein composition. Cell. 1982 Jul;29(3):847–858. doi: 10.1016/0092-8674(82)90446-9. [DOI] [PubMed] [Google Scholar]
  10. Carlson C., Sirotkin H., Pandita R., Goldberg R., McKie J., Wadey R., Patanjali S. R., Weissman S. M., Anyane-Yeboa K., Warburton D. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet. 1997 Sep;61(3):620–629. doi: 10.1086/515508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Côté J., Quinn J., Workman J. L., Peterson C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science. 1994 Jul 1;265(5168):53–60. doi: 10.1126/science.8016655. [DOI] [PubMed] [Google Scholar]
  12. Dimova D., Nackerdien Z., Furgeson S., Eguchi S., Osley M. A. A role for transcriptional repressors in targeting the yeast Swi/Snf complex. Mol Cell. 1999 Jul;4(1):75–83. doi: 10.1016/s1097-2765(00)80189-6. [DOI] [PubMed] [Google Scholar]
  13. Dutertre S., Ababou M., Onclercq R., Delic J., Chatton B., Jaulin C., Amor-Guéret M. Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene. 2000 May 25;19(23):2731–2738. doi: 10.1038/sj.onc.1203595. [DOI] [PubMed] [Google Scholar]
  14. Farrell M. J., Stadt H., Wallis K. T., Scambler P., Hixon R. L., Wolfe R., Leatherbury L., Kirby M. L. HIRA, a DiGeorge syndrome candidate gene, is required for cardiac outflow tract septation. Circ Res. 1999 Feb 5;84(2):127–135. doi: 10.1161/01.res.84.2.127. [DOI] [PubMed] [Google Scholar]
  15. Gottlieb S., Emanuel B. S., Driscoll D. A., Sellinger B., Wang Z., Roe B., Budarf M. L. The DiGeorge syndrome minimal critical region contains a goosecoid-like (GSCL) homeobox gene that is expressed early in human development. Am J Hum Genet. 1997 May;60(5):1194–1201. [PMC free article] [PubMed] [Google Scholar]
  16. Hall C., Nelson D. M., Ye X., Baker K., DeCaprio J. A., Seeholzer S., Lipinski M., Adams P. D. HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression. Mol Cell Biol. 2001 Mar;21(5):1854–1865. doi: 10.1128/MCB.21.5.1854-1865.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hendzel M. J., Davie J. R. Nuclear distribution of histone deacetylase: a marker enzyme for the internal nuclear matrix. Biochim Biophys Acta. 1992 Apr 6;1130(3):307–313. doi: 10.1016/0167-4781(92)90443-4. [DOI] [PubMed] [Google Scholar]
  18. Hendzel M. J., Sun J. M., Chen H. Y., Rattner J. B., Davie J. R. Histone acetyltransferase is associated with the nuclear matrix. J Biol Chem. 1994 Sep 9;269(36):22894–22901. [PubMed] [Google Scholar]
  19. Imbalzano A. N., Kwon H., Green M. R., Kingston R. E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature. 1994 Aug 11;370(6489):481–485. doi: 10.1038/370481a0. [DOI] [PubMed] [Google Scholar]
  20. Jaumot M., Graña X., Giordano A., Reddy P. V., Agell N., Bachs O. Cyclin/cdk2 complexes in the nucleus of HeLa cells. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1527–1534. doi: 10.1006/bbrc.1994.2359. [DOI] [PubMed] [Google Scholar]
  21. Kim T. A., Lim J., Ota S., Raja S., Rogers R., Rivnay B., Avraham H., Avraham S. NRP/B, a novel nuclear matrix protein, associates with p110(RB) and is involved in neuronal differentiation. J Cell Biol. 1998 May 4;141(3):553–566. doi: 10.1083/jcb.141.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kirov N., Shtilbans A., Rushlow C. Isolation and characterization of a new gene encoding a member of the HIRA family of proteins from Drosophila melanogaster. Gene. 1998 Jun 8;212(2):323–332. doi: 10.1016/s0378-1119(98)00143-7. [DOI] [PubMed] [Google Scholar]
  23. Lammer E. J., Opitz J. M. The DiGeorge anomaly as a developmental field defect. Am J Med Genet Suppl. 1986;2:113–127. doi: 10.1002/ajmg.1320250615. [DOI] [PubMed] [Google Scholar]
  24. Lamour V., Lécluse Y., Desmaze C., Spector M., Bodescot M., Aurias A., Osley M. A., Lipinski M. A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region. Hum Mol Genet. 1995 May;4(5):791–799. doi: 10.1093/hmg/4.5.791. [DOI] [PubMed] [Google Scholar]
  25. Lechner M. S., Levitan I., Dressler G. R. PTIP, a novel BRCT domain-containing protein interacts with Pax2 and is associated with active chromatin. Nucleic Acids Res. 2000 Jul 15;28(14):2741–2751. doi: 10.1093/nar/28.14.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lindsay E. A., Vitelli F., Su H., Morishima M., Huynh T., Pramparo T., Jurecic V., Ogunrinu G., Sutherland H. F., Scambler P. J. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001 Mar 1;410(6824):97–101. doi: 10.1038/35065105. [DOI] [PubMed] [Google Scholar]
  27. Llevadot R., Estivill X., Scambler P., Pritchard M. Isolation and genomic characterization of the TUPLE1/HIRA gene of the pufferfish Fugu rubripes. Gene. 1998 Feb 27;208(2):279–283. doi: 10.1016/s0378-1119(98)00010-9. [DOI] [PubMed] [Google Scholar]
  28. Lorain S., Quivy J. P., Monier-Gavelle F., Scamps C., Lécluse Y., Almouzni G., Lipinski M. Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol Cell Biol. 1998 Sep;18(9):5546–5556. doi: 10.1128/mcb.18.9.5546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lüscher B., Eisenman R. N. Mitosis-specific phosphorylation of the nuclear oncoproteins Myc and Myb. J Cell Biol. 1992 Aug;118(4):775–784. doi: 10.1083/jcb.118.4.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Magnaghi P., Roberts C., Lorain S., Lipinski M., Scambler P. J. HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3. Nat Genet. 1998 Sep;20(1):74–77. doi: 10.1038/1739. [DOI] [PubMed] [Google Scholar]
  31. Merscher S., Funke B., Epstein J. A., Heyer J., Puech A., Lu M. M., Xavier R. J., Demay M. B., Russell R. G., Factor S. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001 Feb 23;104(4):619–629. doi: 10.1016/s0092-8674(01)00247-1. [DOI] [PubMed] [Google Scholar]
  32. Muchardt C., Reyes J. C., Bourachot B., Leguoy E., Yaniv M. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 1996 Jul 1;15(13):3394–3402. [PMC free article] [PubMed] [Google Scholar]
  33. Nakayasu H., Berezney R. Mapping replicational sites in the eucaryotic cell nucleus. J Cell Biol. 1989 Jan;108(1):1–11. doi: 10.1083/jcb.108.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Neer E. J., Smith T. F. A groovy new structure. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):960–962. doi: 10.1073/pnas.97.3.960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Osley M. A., Lycan D. Trans-acting regulatory mutations that alter transcription of Saccharomyces cerevisiae histone genes. Mol Cell Biol. 1987 Dec;7(12):4204–4210. doi: 10.1128/mcb.7.12.4204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reyes J. C., Muchardt C., Yaniv M. Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J Cell Biol. 1997 Apr 21;137(2):263–274. doi: 10.1083/jcb.137.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roberts C., Daw S. C., Halford S., Scambler P. J. Cloning and developmental expression analysis of chick Hira (Chira), a candidate gene for DiGeorge syndrome. Hum Mol Genet. 1997 Feb;6(2):237–245. doi: 10.1093/hmg/6.2.237. [DOI] [PubMed] [Google Scholar]
  38. Scamps C., Lorain S., Lamour V., Lipinski M. The HIR protein family: isolation and characterization of a complete murine cDNA. Biochim Biophys Acta. 1996 Apr 10;1306(1):5–8. doi: 10.1016/0167-4781(96)00010-3. [DOI] [PubMed] [Google Scholar]
  39. Sherwood P. W., Tsang S. V., Osley M. A. Characterization of HIR1 and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Jan;13(1):28–38. doi: 10.1128/mcb.13.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith T. F., Gaitatzes C., Saxena K., Neer E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci. 1999 May;24(5):181–185. doi: 10.1016/s0968-0004(99)01384-5. [DOI] [PubMed] [Google Scholar]
  41. Spector M. S., Raff A., DeSilva H., Lee K., Osley M. A. Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol Cell Biol. 1997 Feb;17(2):545–552. doi: 10.1128/mcb.17.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tawfic S., Ahmed K. Association of casein kinase 2 with nuclear matrix. Possible role in nuclear matrix protein phosphorylation. J Biol Chem. 1994 Mar 11;269(10):7489–7493. [PubMed] [Google Scholar]
  43. Wei X., Somanathan S., Samarabandu J., Berezney R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol. 1999 Aug 9;146(3):543–558. doi: 10.1083/jcb.146.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wesierska-Gadek J., Sauermann G. Modification of nuclear matrix proteins by ADP-ribosylation. Association of nuclear ADP-ribosyltransferase with the nuclear matrix. Eur J Biochem. 1985 Dec 2;153(2):421–428. doi: 10.1111/j.1432-1033.1985.tb09319.x. [DOI] [PubMed] [Google Scholar]
  45. Wilming L. G., Snoeren C. A., van Rijswijk A., Grosveld F., Meijers C. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients. Hum Mol Genet. 1997 Feb;6(2):247–258. doi: 10.1093/hmg/6.2.247. [DOI] [PubMed] [Google Scholar]
  46. Winston F., Carlson M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 1992 Nov;8(11):387–391. doi: 10.1016/0168-9525(92)90300-s. [DOI] [PubMed] [Google Scholar]
  47. Wu C. Chromatin remodeling and the control of gene expression. J Biol Chem. 1997 Nov 7;272(45):28171–28174. doi: 10.1074/jbc.272.45.28171. [DOI] [PubMed] [Google Scholar]
  48. Zeng C., McNeil S., Pockwinse S., Nickerson J., Shopland L., Lawrence J. B., Penman S., Hiebert S., Lian J. B., van Wijnen A. J. Intranuclear targeting of AML/CBFalpha regulatory factors to nuclear matrix-associated transcriptional domains. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1585–1589. doi: 10.1073/pnas.95.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES