Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):457–464. doi: 10.1042/0264-6021:3580457

Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461.

P Videira 1, A Fialho 1, R A Geremia 1, C Breton 1, I Sá-Correia 1
PMCID: PMC1222079  PMID: 11513745

Abstract

Biosynthesis of bacterial polysaccharide-repeat units proceeds by sequential transfer of sugars, from the appropriate sugar donor to an activated lipid carrier, by committed glycosyltransferases (GTs). Few studies on the mechanism of action for this type of GT are available. Sphingomonas paucimobilis A.T.C.C. 31461 produces the industrially important polysaccharide gellan gum. We have cloned the gelK gene from S. paucimobilis A.T.C.C. 31461. GelK belongs to family 1 of the GT classification [Campbell, Davies, Bulone, Henrissat (1997) Biochem. J. 326, 929-939]. Sequence similarity studies suggest that GelK consists of two protein modules corresponding to the -NH(2) and -CO(2)H halves, the latter possibly harbouring the GT activity. The gelK gene and the open reading frames coding for the -NH(2) (GelK(NH2)) and -CO(2)H (GelK(COOH)) halves were overexpressed in Escherichia coli. GelK and GelK(NH2) were present in both the soluble and membrane fractions of E. coli, whereas GelK(COOH) was only present in the soluble fraction. GelK catalysed the transfer of [(14)C]glucuronic acid from UDP-[(14)C]glucuronic acid into a glycolipid extracted from S. paucimobilis or E. coli, even in the presence of EDTA, and the radioactive sugar was released from the glycolipid by beta-1,4-glucuronidase. GelK was not able to use synthetic glucosyl derivatives as acceptors, indicating that the PP(i)-lipid moiety is needed for enzymic activity. Recombinant GelK(NH2) and GelK(COOH) did not show detectable activity. Based on the biochemical characteristics of GelK and on sequence similarities with N-acetylglucosaminyltransferase, we propose that GT families 1 and 28 form a superfamily.

Full Text

The Full Text of this article is available as a PDF (231.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdian P. L., Lellouch A. C., Gautier C., Ielpi L., Geremia R. A. Identification of essential amino acids in the bacterial alpha -mannosyltransferase aceA. J Biol Chem. 2000 Dec 22;275(51):40568–40575. doi: 10.1074/jbc.M007496200. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell J. A., Davies G. J., Bulone V., Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997 Sep 15;326(Pt 3):929–939. doi: 10.1042/bj3260929u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell JA, Davies GJ, Bulone V, V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities . Biochem J. 1998 Feb 1;329(Pt 3):719–719. doi: 10.1042/bj3290719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charnock S. J., Davies G. J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry. 1999 May 18;38(20):6380–6385. doi: 10.1021/bi990270y. [DOI] [PubMed] [Google Scholar]
  7. Cserzö M., Wallin E., Simon I., von Heijne G., Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 1997 Jun;10(6):673–676. doi: 10.1093/protein/10.6.673. [DOI] [PubMed] [Google Scholar]
  8. Fialho AM, Martins LO, Donval ML, Leitao JH, Ridout MJ, Jay AJ, Morris VJ, Sa-Correia I., I Structures and properties of gellan polymers produced by sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey . Appl Environ Microbiol. 1999 Jun;65(6):2485–2491. doi: 10.1128/aem.65.6.2485-2491.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gastinel L. N., Bignon C., Misra A. K., Hindsgaul O., Shaper J. H., Joziasse D. H. Bovine alpha1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases. EMBO J. 2001 Feb 15;20(4):638–649. doi: 10.1093/emboj/20.4.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gastinel L. N., Cambillau C., Bourne Y. Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 1999 Jul 1;18(13):3546–3557. doi: 10.1093/emboj/18.13.3546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geremia R. A., Roux M., Ferreiro D. U., Dauphin-Dubois R., Lellouch A. C., Ielpi L. Expression and biochemical characterisation of recombinant AceA, a bacterial alpha-mannosyltransferase. Mol Gen Genet. 1999 Jul;261(6):933–940. doi: 10.1007/s004380051040. [DOI] [PubMed] [Google Scholar]
  12. Ha S., Walker D., Shi Y., Walker S. The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 2000 Jun;9(6):1045–1052. doi: 10.1110/ps.9.6.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kapitonov D., Yu R. K. Conserved domains of glycosyltransferases. Glycobiology. 1999 Oct;9(10):961–978. doi: 10.1093/glycob/9.10.961. [DOI] [PubMed] [Google Scholar]
  14. Kolkman M. A., van der Zeijst B. A., Nuijten P. J. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae serotype 14. J Biol Chem. 1997 Aug 1;272(31):19502–19508. doi: 10.1074/jbc.272.31.19502. [DOI] [PubMed] [Google Scholar]
  15. Lellouch A. C., Geremia R. A. Expression and study of recombinant ExoM, a beta1-4 glucosyltransferase involved in succinoglycan biosynthesis in Sinorhizobium meliloti. J Bacteriol. 1999 Feb;181(4):1141–1148. doi: 10.1128/jb.181.4.1141-1148.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martins L. O., Sá-Correia I. Gellan gum biosynthetic enzymes in producing and nonproducing variants of Pseudomonas elodea. Biotechnol Appl Biochem. 1991 Dec;14(3):357–364. [PubMed] [Google Scholar]
  17. Mengin-Lecreulx D., Texier L., Rousseau M., van Heijenoort J. The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J Bacteriol. 1991 Aug;173(15):4625–4636. doi: 10.1128/jb.173.15.4625-4636.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moréra S., Imberty A., Aschke-Sonnenborn U., Rüger W., Freemont P. S. T4 phage beta-glucosyltransferase: substrate binding and proposed catalytic mechanism. J Mol Biol. 1999 Sep 24;292(3):717–730. doi: 10.1006/jmbi.1999.3094. [DOI] [PubMed] [Google Scholar]
  19. Pedersen L. C., Tsuchida K., Kitagawa H., Sugahara K., Darden T. A., Negishi M. Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J Biol Chem. 2000 Nov 3;275(44):34580–34585. doi: 10.1074/jbc.M007399200. [DOI] [PubMed] [Google Scholar]
  20. Persson K., Ly H. D., Dieckelmann M., Wakarchuk W. W., Withers S. G., Strynadka N. C. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat Struct Biol. 2001 Feb;8(2):166–175. doi: 10.1038/84168. [DOI] [PubMed] [Google Scholar]
  21. Pollock T. J., van Workum W. A., Thorne L., Mikolajczak M. J., Yamazaki M., Kijne J. W., Armentrout R. W. Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. J Bacteriol. 1998 Feb;180(3):586–593. doi: 10.1128/jb.180.3.586-593.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tolmasky M. E., Staneloni R. J., Leloir L. F. Lipid-bound saccharides in Rhizobium meliloti. J Biol Chem. 1982 Jun 25;257(12):6751–6757. [PubMed] [Google Scholar]
  25. Tomaschewski J., Gram H., Crabb J. W., Rüger W. T4-induced alpha- and beta-glucosyltransferase: cloning of the genes and a comparison of their products based on sequencing data. Nucleic Acids Res. 1985 Nov 11;13(21):7551–7568. doi: 10.1093/nar/13.21.7551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Unligil U. M., Rini J. M. Glycosyltransferase structure and mechanism. Curr Opin Struct Biol. 2000 Oct;10(5):510–517. doi: 10.1016/s0959-440x(00)00124-x. [DOI] [PubMed] [Google Scholar]
  27. Unligil U. M., Zhou S., Yuwaraj S., Sarkar M., Schachter H., Rini J. M. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 2000 Oct 16;19(20):5269–5280. doi: 10.1093/emboj/19.20.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Videira P. A., Cortes L. L., Fialho A. M., Sá-Correia I. Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl Environ Microbiol. 2000 May;66(5):2252–2258. doi: 10.1128/aem.66.5.2252-2258.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vrielink A., Rüger W., Driessen H. P., Freemont P. S. Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 1994 Aug 1;13(15):3413–3422. doi: 10.1002/j.1460-2075.1994.tb06646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamazaki M., Thorne L., Mikolajczak M., Armentrout R. W., Pollock T. J. Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol. 1996 May;178(9):2676–2687. doi: 10.1128/jb.178.9.2676-2687.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Kranenburg R., van Swam I. I., Marugg J. D., Kleerebezem M., de Vos W. M. Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J Bacteriol. 1999 Jan;181(1):338–340. doi: 10.1128/jb.181.1.338-340.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES