Abstract
Owing to the expression of more than one type of galectin in animal tissues, the delineation of the functions of individual members of this lectin family requires the precise definition of their carbohydrate specificities. Thus, the binding properties of chicken liver galectin (CG-16) to glycoproteins (gps) and Streptococcus pneumoniae type 14 polysaccharide were studied by the biotin/avidin-mediated microtitre-plate lectin-binding assay and by the inhibition of lectin-glycan interactions with sugar ligands. Among 33 glycans tested for lectin binding, CG-16 reacted best with human blood group ABO (H) precursor gps and their equivalent gps, which contain a high density of D-galactopyranose(beta1-4)2-acetamido-2-deoxy-D-glucopyranose [Gal(beta1-4)GlcNAc] and Gal(beta1-3)GlcNAc residues at the non-reducing end, but this lectin reacted weakly or not at all with A-,H-type and sialylated gps. Among the oligosaccharides tested by the inhibition assay, the tri-antennary Gal(beta1-4)GlcNAc (Tri-II) was the best. It was 2.1x10(3) nM and 3.0 times more potent than Gal and Gal(beta1-4)GlcNAc (II)/Gal(beta1-3)GlcNAc(beta1-3)Gal(beta1-4)Glc (lacto-N-tetraose) respectively. CG-16 has a preference for the beta-anomer of Gal at the non-reducing end of oligosaccharides with a Gal(beta1-4) linkage >Gal(beta1-3)> or =Gal(beta1-6). From the results, it can be concluded that the combining site of this agglutinin should be a cavity type, and that a hydrophobic interaction in the vicinity of the binding site for sugar accommodation increases the affinity. The binding site of CG-16 is as large as a tetrasaccharide of the beta-anomer of Gal, and is most complementary to lacto-N-tetraose and Gal(beta1-4)GlcNAc related sequences.
Full Text
The Full Text of this article is available as a PDF (288.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN P. Z., KABAT E. A. Immunochemical studies on blood groups. XXII. Immunochemical studies on the nondialyzable residue from partially hydrolyzed blood group A, B and O(H) substances (P1 fractions). J Immunol. 1959 Apr;82(4):340–357. [PubMed] [Google Scholar]
- Akimoto Y., Obinata A., Hirabayashi J., Sakakura Y., Endo H., Kasai K., Hirano H. Secretion of endogenous 16-kDa beta-galactoside-binding lectin from vitamin A-pretreated chick embryonic cultured skin. Exp Cell Res. 1993 Apr;205(2):251–260. doi: 10.1006/excr.1993.1084. [DOI] [PubMed] [Google Scholar]
- BEISER S. M., KABAT E. A. Immunochemical studies on blood groups. XII. Preparation of blood group substances from bovine stomach linings and a comparison of their chemical and immunochemical properties with those of blood group substances from other species. J Immunol. 1952 Jan;68(1):19–40. [PubMed] [Google Scholar]
- Beyer E. C., Barondes S. H. Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues. J Cell Biol. 1982 Jan;92(1):23–27. doi: 10.1083/jcb.92.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bharadwaj S., Kaltner H., Korchagina E. Y., Bovin N. V., Gabius H. J., Surolia A. Microcalorimetric indications for ligand binding as a function of the protein for galactoside-specific plant and avian lectins. Biochim Biophys Acta. 1999 Oct 18;1472(1-2):191–196. doi: 10.1016/s0304-4165(99)00120-8. [DOI] [PubMed] [Google Scholar]
- Downs F., Herp A. Chemical studies on a hamster sublingual glycoprotein. Int J Pept Protein Res. 1977;10(3):229–234. doi: 10.1111/j.1399-3011.1977.tb01738.x. [DOI] [PubMed] [Google Scholar]
- Duk M., Lisowska E., Wu J. H., Wu A. M. The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal Biochem. 1994 Sep;221(2):266–272. doi: 10.1006/abio.1994.1410. [DOI] [PubMed] [Google Scholar]
- Fournet B., Montreuil J., Strecker G., Dorland L., Haverkamp J., Vliegenthart F. G., Binette J. P., Schmid K. Determination of the primary structures of 16 asialo-carbohydrate units derived from human plasma alpha 1-acid glycoprotein by 360-MHZ 1H NMR spectroscopy and permethylation analysis. Biochemistry. 1978 Nov 28;17(24):5206–5214. doi: 10.1021/bi00617a021. [DOI] [PubMed] [Google Scholar]
- Gabius H. J. Animal lectins. Eur J Biochem. 1997 Feb 1;243(3):543–576. doi: 10.1111/j.1432-1033.1997.t01-1-00543.x. [DOI] [PubMed] [Google Scholar]
- Gabius H. J. Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften. 2000 Mar;87(3):108–121. doi: 10.1007/s001140050687. [DOI] [PubMed] [Google Scholar]
- Gabius H. J. Influence of type of linkage and spacer on the interaction of beta-galactoside-binding proteins with immobilized affinity ligands. Anal Biochem. 1990 Aug 15;189(1):91–94. doi: 10.1016/0003-2697(90)90050-j. [DOI] [PubMed] [Google Scholar]
- Gabius H. J., Wosgien B., Hendrys M., Bardosi A. Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry. 1991;95(3):269–277. doi: 10.1007/BF00266777. [DOI] [PubMed] [Google Scholar]
- Gupta D., Kaltner H., Dong X., Gabius H. J., Brewer C. F. Comparative cross-linking activities of lactose-specific plant and animal lectins and a natural lactose-binding immunoglobulin G fraction from human serum with asialofetuin. Glycobiology. 1996 Dec;6(8):843–849. doi: 10.1093/glycob/6.8.843. [DOI] [PubMed] [Google Scholar]
- Herp A., Borelli C., Wu A. M. Biochemistry and lectin binding properties of mammalian salivary mucous glycoproteins. Adv Exp Med Biol. 1988;228:395–435. doi: 10.1007/978-1-4613-1663-3_15. [DOI] [PubMed] [Google Scholar]
- Herp A., Wu A. M., Moschera J. Current concepts of the structure and nature of mammalian salivary mucous glycoproteins. Mol Cell Biochem. 1979 Jan 15;23(1):27–44. doi: 10.1007/BF00226677. [DOI] [PubMed] [Google Scholar]
- Lindberg B., Lönngren J., Powell D. A. Structural studies on the specific type-14 pneumococcal polysaccharide. Carbohydr Res. 1977 Sep;58(1):177–186. doi: 10.1016/s0008-6215(00)83413-8. [DOI] [PubMed] [Google Scholar]
- Lips K. S., Kaltner H., Reuter G., Stierstorfer B., Sinowatz F., Gabius H. J. Correspondence of gradual developmental increases of expression of galectin-reactive glycoconjugates with alterations of the total contents of the two differentially regulated galectins in chicken intestine and liver as indication for overlapping functions. Histol Histopathol. 1999 Jul;14(3):743–760. doi: 10.14670/HH-14.743. [DOI] [PubMed] [Google Scholar]
- Lloyd K. O., Kabat E. A. Immunochemical studies on blood groups. XLI. Proposed structures for the carbohydrate portions of blood group A, B, H, Lewis-a, and Lewis-b substances. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1470–1477. doi: 10.1073/pnas.61.4.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maisonrouge-McAuliffe F., Kabat E. A. Immunochemical studies on blood groups. Heterogeneity of oligosaccharides liberated by degradation with alkaline borohydride of two human ovarian cyst fractions differing in B, I, and i activities and in reactivity toward concanavalin A. Arch Biochem Biophys. 1976 Jul;175(1):81–89. doi: 10.1016/0003-9861(76)90487-2. [DOI] [PubMed] [Google Scholar]
- Matsutani E., Yamagata T. Chick endogenous lectin enhances chondrogenesis of cultured chick limb bud cells. Dev Biol. 1982 Aug;92(2):544–548. doi: 10.1016/0012-1606(82)90199-3. [DOI] [PubMed] [Google Scholar]
- Moschera J., Pigman W. The isolation and characterization of rat sublingual mucus-glycoprotein. Carbohydr Res. 1975 Mar;40(1):53–67. doi: 10.1016/s0008-6215(00)82668-3. [DOI] [PubMed] [Google Scholar]
- Mutsaers J. H., van Halbeek H., Vliegenthart J. F., Wu A. M., Kabat E. A. Typing of core and backbone domains of mucin-type oligosaccharides from human ovarian-cyst glycoproteins by 500-MHz 1H-NMR spectroscopy. Eur J Biochem. 1986 May 15;157(1):139–146. doi: 10.1111/j.1432-1033.1986.tb09649.x. [DOI] [PubMed] [Google Scholar]
- Nilsson B., Nordén N. E., Svensson S. Structural studies on the carbohydrate portion of fetuin. J Biol Chem. 1979 Jun 10;254(11):4545–4553. [PubMed] [Google Scholar]
- Nurminskaya M., Linsenmayer T. F. Identification and characterization of up-regulated genes during chondrocyte hypertrophy. Dev Dyn. 1996 Jul;206(3):260–271. doi: 10.1002/(SICI)1097-0177(199607)206:3<260::AID-AJA4>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Oda Y., Ohyama Y., Obinata A., Endo H., Kasai K. Endogenous beta-galactoside-binding lectin expression is suppressed in retinol-induced mucous metaplasia of chick embryonic epidermis. Exp Cell Res. 1989 May;182(1):33–43. doi: 10.1016/0014-4827(89)90277-2. [DOI] [PubMed] [Google Scholar]
- Schneller M., André S., Cihak J., Kaltner H., Merkle H., Rademaker G. J., Haverkamp J., Thomas-Oates J. E., Lösch U., Gabius H. J. Differential binding of two chicken beta-galactoside-specific lectins to homologous lymphocyte subpopulations and evidence for inhibitor activity of the dimeric lectin on stimulated T cells. Cell Immunol. 1995 Nov;166(1):35–43. doi: 10.1006/cimm.1995.0005. [DOI] [PubMed] [Google Scholar]
- Slomiany A., Slomiany B. L. Structures of the acidic oligosaccharides isolated from rat sublingual glycoprotein. J Biol Chem. 1978 Oct 25;253(20):7301–7306. [PubMed] [Google Scholar]
- Solís D., Romero A., Kaltner H., Gabius H. J., Díaz-Mauriño T. Different architecture of the combining site of the two chicken galectins revealed by chemical mapping studies with synthetic ligand derivatives. J Biol Chem. 1996 May 31;271(22):12744–12748. doi: 10.1074/jbc.271.22.12744. [DOI] [PubMed] [Google Scholar]
- Tettamanti G., Pigman W. Purification and characterization of bovine and ovine submaxillary mucins. Arch Biochem Biophys. 1968 Mar 20;124(1):41–50. doi: 10.1016/0003-9861(68)90301-9. [DOI] [PubMed] [Google Scholar]
- Van Halbeek H., Dorland L., Vliegenthart J. F., Kochetkov N. K., Arbatsky N. P., Derevitskaya V. A. Characterization of the primary structure and the microheterogeneity of the carbohydrate chains of porcine blood-group H substance by 500-MHz 1H-NMR spectroscopy. Eur J Biochem. 1982 Sep;127(1):21–29. doi: 10.1111/j.1432-1033.1982.tb06832.x. [DOI] [PubMed] [Google Scholar]
- Varela P. F., Solís D., Díaz-Mauriño T., Kaltner H., Gabius H. J., Romero A. The 2.15 A crystal structure of CG-16, the developmentally regulated homodimeric chicken galectin. J Mol Biol. 1999 Nov 26;294(2):537–549. doi: 10.1006/jmbi.1999.3273. [DOI] [PubMed] [Google Scholar]
- Vicari G., Kabat E. A. Immunochemical studies on blood groups. XLII. Isolation and characterization from ovarian cyst fluid of a blood group substance lacking A, B, H, Lea and Leb specificity. J Immunol. 1969 Apr;102(4):821–825. [PubMed] [Google Scholar]
- Vicari G., Kabat E. A. Structures and activities of oligosaccharides produced by alkaline degradation of a blood group substance lacking A, B, H, Le b specificities. Biochemistry. 1970 Aug 18;9(17):3414–3421. doi: 10.1021/bi00819a020. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Herp A., Song S. C., Wu J. H., Chang K. S. Interaction of native and asialo rat sublingual glycoproteins with lectins. Life Sci. 1995;57(20):1841–1852. doi: 10.1016/0024-3205(95)02164-e. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Kabat E. A., Gruezo F. G., Allen H. J. Immunochemical studies on the combining site of the D-galactopyranose and 2-acetamido-2-deoxy-D-galactopyranose specific lectin isolated from Bauhinia purpurea alba seeds. Arch Biochem Biophys. 1980 Oct 15;204(2):622–639. doi: 10.1016/0003-9861(80)90074-0. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Kabat E. A., Nilsson B., Zopf D. A., Gruezo F. G., Liao J. Immunochemical studies on blood groups. Purification and characterization of radioactive 3H-reduced di- to hexasaccharides produced by alkaline beta-elimination-borohydride 3H reduction of Smith degraded blood group A active glycoproteins. J Biol Chem. 1984 Jun 10;259(11):7178–7186. [PubMed] [Google Scholar]
- Wu A. M., Kabat E. A., Pereira M. E., Gruezo F. G., Liao J. Immunochemical studies on blood groups: The internal structure and immunological properties of water-soluble human blood group A substance studied by Smith degradation, liberation, and fractionation of oligosaccharides and reaction with lectins. Arch Biochem Biophys. 1982 May;215(2):390–404. doi: 10.1016/0003-9861(82)90099-6. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Lin S. R., Chin L. K., Chow L. P., Lin J. Y. Defining the carbohydrate specificities of Abrus precatorius agglutinin as T (Gal beta 1----3GalNAc) greater than I/II (Gal beta 1----3/4GlcNAc). J Biol Chem. 1992 Sep 25;267(27):19130–19139. [PubMed] [Google Scholar]
- Wu A. M., Pigman W. Preparation and characterization of armadillo submandibular glycoproteins. Biochem J. 1977 Jan 1;161(1):37–47. doi: 10.1042/bj1610037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu A. M. Structural concepts of the human blood group A, B, H, Le(a), Le(b), I and i active glycoproteins purified from human ovarian cyst fluid. Adv Exp Med Biol. 1988;228:351–394. doi: 10.1007/978-1-4613-1663-3_14. [DOI] [PubMed] [Google Scholar]
- Wu A. M., WU J. H., Watkins W. M., Chen C. P., Tsai M. C. Binding properties of a blood group Le(a+) active sialoglycoprotein, purified from human ovarian cyst, with applied lectins. Biochim Biophys Acta. 1996 Jun 7;1316(2):139–144. doi: 10.1016/0925-4439(96)00016-6. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Wu J. H., Chen Y. Y., Song S. C., Kabat E. A. Further characterization of the combining sites of Bandeiraea (Griffonia) simplicifolia lectin-I, isolectin A(4). Glycobiology. 1999 Nov;9(11):1161–1170. doi: 10.1093/glycob/9.11.1161. [DOI] [PubMed] [Google Scholar]
- Wu J. H., Song S. C., Chen Y. Y., Tsai M. C., Kabat E. A., Wu A. M. Multi-antennary Gal beta1-->4GlcNAc and Gal beta1-->3GalNAc clusters as important ligands for a lectin isolated from the sponge Geodia cydonium. FEBS Lett. 1998 May 1;427(1):134–138. doi: 10.1016/s0014-5793(98)00411-6. [DOI] [PubMed] [Google Scholar]