Abstract
In the accompanying paper [Beylot, McKie, Voragen, Doeswijk-Voragen and Gilbert (2001) Biochem. J. 358, 607-614] the chromosome of Pseudomonas cellulosa was shown to contain two genes, abf51A and abf62A, that encode arabinofuranosidases belonging to glycoside hydrolase families 51 and 62, respectively. In this report we show that expression of Abf51A is induced by arabinose and arabinose-containing polysaccharides. Northern-blot analysis showed that abf51A was efficiently transcribed, whereas no transcript derived from abf62A was detected in the presence of arabinose-containing polysaccharides. Zymogram and Western-blot analyses revealed that Abf51A was located on the outer membrane of P. cellulosa. To investigate the importance of Abf51A in the release of arabinose from poly- and oligosaccharides, transposon mutagenesis was used to construct an abf51A-inactive mutant of P. cellulosa (Deltaabf51A). The mutant did not grow on linear arabinan or sugar beet arabinan, and utilized arabinoxylan much more slowly than the wild-type bacterium. Arabinofuranosidase activity in Deltaabf51A against aryl-alpha-arabinofuranosides, arabinan and alpha1,5-linked arabino-oligosaccharides was approx. 1% of the wild-type bacterium. The mutant bacterium did not exhibit arabinofuranosidase activity against arabinoxylan, supporting the view that abf62A is not expressed in P. cellulosa. These data indicate that P. cellulosa expresses a membrane-bound glycoside hydrolase family 51 arabinofuranosidase that plays a pivotal role in releasing arabinose from polysaccharides and arabino-oligosaccharides.
Full Text
The Full Text of this article is available as a PDF (169.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beylot M. H., McKie V. A., Voragen A. G., Doeswijk-Voragen C. H., Gilbert H. J. The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity. Biochem J. 2001 Sep 15;358(Pt 3):607–614. doi: 10.1042/0264-6021:3580607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biely P., Vrsanská M., Tenkanen M., Kluepfel D. Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol. 1997 Sep 16;57(1-3):151–166. doi: 10.1016/s0168-1656(97)00096-5. [DOI] [PubMed] [Google Scholar]
- Béguin P., Lemaire M. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol. 1996 Jun;31(3):201–236. doi: 10.3109/10409239609106584. [DOI] [PubMed] [Google Scholar]
- De Groot P. W., Basten D. E., Sonnenberg A., Van Griensven L. J., Visser J., Schaap P. J. An endo-1,4-beta-xylanase-encoding gene from Agaricus bisporus is regulated by compost-specific factors. J Mol Biol. 1998 Mar 27;277(2):273–284. doi: 10.1006/jmbi.1997.1605. [DOI] [PubMed] [Google Scholar]
- Fontes C. M., Gilbert H. J., Hazlewood G. P., Clarke J. H., Prates J. A., McKie V. A., Nagy T., Fernandes T. H., Ferreira L. M. A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology. 2000 Aug;146(Pt 8):1959–1967. doi: 10.1099/00221287-146-8-1959. [DOI] [PubMed] [Google Scholar]
- Fontes C. M., Hall J., Hirst B. H., Hazlewood G. P., Gilbert H. J. The resistance of cellulases and xylanases to proteolytic inactivation. Appl Microbiol Biotechnol. 1995 Apr;43(1):52–57. doi: 10.1007/BF00170622. [DOI] [PubMed] [Google Scholar]
- Gilead S., Shoham Y. Purification and characterization of alpha-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol. 1995 Jan;61(1):170–174. doi: 10.1128/aem.61.1.170-174.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halstead J. R., Vercoe P. E., Gilbert H. J., Davidson K., Hazlewood G. P. A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology. 1999 Nov;145(Pt 11):3101–3108. doi: 10.1099/00221287-145-11-3101. [DOI] [PubMed] [Google Scholar]
- Hazlewood G. P., Gilbert H. J. Structure and function analysis of Pseudomonas plant cell wall hydrolases. Prog Nucleic Acid Res Mol Biol. 1998;61:211–241. doi: 10.1016/s0079-6603(08)60828-4. [DOI] [PubMed] [Google Scholar]
- Hazlewood G. P., Laurie J. I., Ferreira L. M., Gilbert H. J. Pseudomonas fluorescens subsp. cellulosa: an alternative model for bacterial cellulase. J Appl Bacteriol. 1992 Mar;72(3):244–251. doi: 10.1111/j.1365-2672.1992.tb01830.x. [DOI] [PubMed] [Google Scholar]
- Jacob A. E., Cresswell J. M., Hedges R. W., Coetzee J. N., Beringer J. E. Properties of plasmids constructed by the in vitro insertion of DNA from Rhizobium leguminosarum or Proteus mirabilis into RP4. Mol Gen Genet. 1976 Sep 23;147(3):315–323. doi: 10.1007/BF00582883. [DOI] [PubMed] [Google Scholar]
- Kellett L. E., Poole D. M., Ferreira L. M., Durrant A. J., Hazlewood G. P., Gilbert H. J. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem J. 1990 Dec 1;272(2):369–376. doi: 10.1042/bj2720369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manin C., Shareek F., Morosoli R., Kluepfel D. Purification and characterization of an alpha-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (abfA). Biochem J. 1994 Sep 1;302(Pt 2):443–449. doi: 10.1042/bj3020443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuo N., Kaneko S., Kuno A., Kobayashi H., Kusakabe I. Purification, characterization and gene cloning of two alpha-L-arabinofuranosidases from streptomyces chartreusis GS901. Biochem J. 2000 Feb 15;346(Pt 1):9–15. [PMC free article] [PubMed] [Google Scholar]
- Rixon J. E., Ferreira L. M., Durrant A. J., Laurie J. I., Hazlewood G. P., Gilbert H. J. Characterization of the gene celD and its encoded product 1,4-beta-D-glucan glucohydrolase D from Pseudomonas fluorescens subsp. cellulosa. Biochem J. 1992 Aug 1;285(Pt 3):947–955. doi: 10.1042/bj2850947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Tomme P., Warren R. A., Gilkes N. R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1–81. doi: 10.1016/s0065-2911(08)60143-5. [DOI] [PubMed] [Google Scholar]
- Van den Bosch L., Manning P. A., Morona R. Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol. 1997 Feb;23(4):765–775. doi: 10.1046/j.1365-2958.1997.2541625.x. [DOI] [PubMed] [Google Scholar]
- Warren R. A. Microbial hydrolysis of polysaccharides. Annu Rev Microbiol. 1996;50:183–212. doi: 10.1146/annurev.micro.50.1.183. [DOI] [PubMed] [Google Scholar]
- Wiegel J., Mothershed C. P., Puls J. Differences in Xylan Degradation by Various Noncellulolytic Thermophilic Anaerobes and Clostridium thermocellum. Appl Environ Microbiol. 1985 Mar;49(3):656–659. doi: 10.1128/aem.49.3.656-659.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]