Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 15;358(Pt 3):637–646. doi: 10.1042/0264-6021:3580637

Pulmonary lipid phosphate phosphohydrolase in plasma membrane signalling platforms.

M Nanjundan 1, F Possmayer 1
PMCID: PMC1222098  PMID: 11535125

Abstract

Lipid phosphate phosphohydrolase (LPP) has recently been proposed to have roles in signal transduction, acting sequentially to phospholipase D (PLD) and in attenuating the effects of phospholipid growth factors on cellular proliferation. In this study, LPP activity is reported to be enriched in lipid-rich signalling platforms isolated from rat lung tissue, isolated rat type II cells and type II cell-mouse lung epithelial cell lines (MLE12 and MLE15). Lung and cell line caveolin-enriched domains (CEDs), prepared on the basis of their detergent-insolubility in Triton X-100, contain caveolin-1 and protein kinase C isoforms. The LPP3 isoform was predominantly localized to rat lung CEDs. These lipid-rich domains, including those from isolated rat type II cells, were enriched both in phosphatidylcholine plus sphingomyelin (PC+SM) and cholesterol. Saponin treatment of MLE15 cells shifted the LPP activity, cholesterol, PC+SM and caveolin-1 from lipid microdomains to detergent-soluble fractions. Elevated LPP activity and LPP1/1a protein are present in caveolae from MLE15 cells prepared using the cationic-colloidal-silica method. In contrast, total plasma membranes had a higher abundance of LPP1/1a protein with low LPP activity. Phorbol ester treatment caused a 3.8-fold increase in LPP specific activity in MLE12 CEDs. Thus the activated form of LPP1/1a may be recruited into caveolae/rafts. Transdifferentiation of type II cells into a type I-like cell demonstrated enrichment in caveolin-1 levels and LPP activity. These results indicate that LPP is localized in caveolae and/or rafts in lung tissue, isolated type II cells and type II cell lines and is consistent with a role for LPP in both caveolae/raft signalling and caveolar dynamics.

Full Text

The Full Text of this article is available as a PDF (328.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An S. Molecular identification and characterization of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. Ann N Y Acad Sci. 2000 Apr;905:25–33. doi: 10.1111/j.1749-6632.2000.tb06535.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G., Kamen B. A., Rothberg K. G., Lacey S. W. Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992 Jan 24;255(5043):410–411. doi: 10.1126/science.1310359. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  4. Bist A., Fielding P. E., Fielding C. J. Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10693–10698. doi: 10.1073/pnas.94.20.10693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brindley D. N., Waggoner D. W. Mammalian lipid phosphate phosphohydrolases. J Biol Chem. 1998 Sep 18;273(38):24281–24284. doi: 10.1074/jbc.273.38.24281. [DOI] [PubMed] [Google Scholar]
  6. Brindley D. N., Waggoner D. W. Phosphatidate phosphohydrolase and signal transduction. Chem Phys Lipids. 1996 May 24;80(1-2):45–57. doi: 10.1016/0009-3084(96)02545-5. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000 Jun 9;275(23):17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
  8. Campbell L., Hollins A. J., Al-Eid A., Newman G. R., von Ruhland C., Gumbleton M. Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochem Biophys Res Commun. 1999 Sep 7;262(3):744–751. doi: 10.1006/bbrc.1999.1280. [DOI] [PubMed] [Google Scholar]
  9. Czarny M., Fiucci G., Lavie Y., Banno Y., Nozawa Y., Liscovitch M. Phospholipase D2: functional interaction with caveolin in low-density membrane microdomains. FEBS Lett. 2000 Feb 11;467(2-3):326–332. doi: 10.1016/s0014-5793(00)01174-1. [DOI] [PubMed] [Google Scholar]
  10. Czarny M., Lavie Y., Fiucci G., Liscovitch M. Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains. Modulation by caveolin-1 expression and caveolin-182-101. J Biol Chem. 1999 Jan 29;274(5):2717–2724. doi: 10.1074/jbc.274.5.2717. [DOI] [PubMed] [Google Scholar]
  11. Dobbs L. G. Isolation and culture of alveolar type II cells. Am J Physiol. 1990 Apr;258(4 Pt 1):L134–L147. doi: 10.1152/ajplung.1990.258.4.L134. [DOI] [PubMed] [Google Scholar]
  12. English D., Welch Z., Kovala A. T., Harvey K., Volpert O. V., Brindley D. N., Garcia J. G. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J. 2000 Nov;14(14):2255–2265. doi: 10.1096/fj.00-0134com. [DOI] [PubMed] [Google Scholar]
  13. Igarashi J., Michel T. Agonist-modulated targeting of the EDG-1 receptor to plasmalemmal caveolae. eNOS activation by sphingosine 1-phosphate and the role of caveolin-1 in sphingolipid signal transduction. J Biol Chem. 2000 Oct 13;275(41):32363–32370. doi: 10.1074/jbc.M003075200. [DOI] [PubMed] [Google Scholar]
  14. Ishikawa T., Kai M., Wada I., Kanoh H. Cell surface activities of the human type 2b phosphatidic acid phosphatase. J Biochem. 2000 Apr;127(4):645–651. doi: 10.1093/oxfordjournals.jbchem.a022652. [DOI] [PubMed] [Google Scholar]
  15. Kim J. H., Han J. M., Lee S., Kim Y., Lee T. G., Park J. B., Lee S. D., Suh P. G., Ryu S. H. Phospholipase D1 in caveolae: regulation by protein kinase Calpha and caveolin-1. Biochemistry. 1999 Mar 23;38(12):3763–3769. doi: 10.1021/bi982478+. [DOI] [PubMed] [Google Scholar]
  16. Kim Y., Han J. M., Han B. R., Lee K. A., Kim J. H., Lee B. D., Jang I. H., Suh P. G., Ryu S. H. Phospholipase D1 is phosphorylated and activated by protein kinase C in caveolin-enriched microdomains within the plasma membrane. J Biol Chem. 2000 May 5;275(18):13621–13627. doi: 10.1074/jbc.275.18.13621. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Langlet C., Bernard A. M., Drevot P., He H. T. Membrane rafts and signaling by the multichain immune recognition receptors. Curr Opin Immunol. 2000 Jun;12(3):250–255. doi: 10.1016/s0952-7915(00)00084-4. [DOI] [PubMed] [Google Scholar]
  19. Lisanti M. P., Scherer P. E., Vidugiriene J., Tang Z., Hermanowski-Vosatka A., Tu Y. H., Cook R. F., Sargiacomo M. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol. 1994 Jul;126(1):111–126. doi: 10.1083/jcb.126.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu J., Oh P., Horner T., Rogers R. A., Schnitzer J. E. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J Biol Chem. 1997 Mar 14;272(11):7211–7222. doi: 10.1074/jbc.272.11.7211. [DOI] [PubMed] [Google Scholar]
  21. Mineo C., Ying Y. S., Chapline C., Jaken S., Anderson R. G. Targeting of protein kinase Calpha to caveolae. J Cell Biol. 1998 May 4;141(3):601–610. doi: 10.1083/jcb.141.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nanjundan M., Possmayer F. Characterization of the pulmonary N-ethylmaleimide-insensitive phosphatidate phosphohydrolase. Exp Lung Res. 2000 Jul-Aug;26(5):361–381. doi: 10.1080/019021400408317. [DOI] [PubMed] [Google Scholar]
  23. Newman G. R., Campbell L., von Ruhland C., Jasani B., Gumbleton M. Caveolin and its cellular and subcellular immunolocalisation in lung alveolar epithelium: implications for alveolar epithelial type I cell function. Cell Tissue Res. 1999 Jan;295(1):111–120. doi: 10.1007/s004410051217. [DOI] [PubMed] [Google Scholar]
  24. Oh P., McIntosh D. P., Schnitzer J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol. 1998 Apr 6;141(1):101–114. doi: 10.1083/jcb.141.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oh P., Schnitzer J. E. Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification. J Biol Chem. 1999 Aug 13;274(33):23144–23154. doi: 10.1074/jbc.274.33.23144. [DOI] [PubMed] [Google Scholar]
  26. Razani B., Schlegel A., Lisanti M. P. Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J Cell Sci. 2000 Jun;113(Pt 12):2103–2109. doi: 10.1242/jcs.113.12.2103. [DOI] [PubMed] [Google Scholar]
  27. Rooney S. A., Gobran L. I. Activation of phospholipase D in rat type II pneumocytes by ATP and other surfactant secretagogues. Am J Physiol. 1993 Feb;264(2 Pt 1):L133–L140. doi: 10.1152/ajplung.1993.264.2.L133. [DOI] [PubMed] [Google Scholar]
  28. Schnitzer J. E., Liu J., Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem. 1995 Jun 16;270(24):14399–14404. doi: 10.1074/jbc.270.24.14399. [DOI] [PubMed] [Google Scholar]
  29. Schnitzer J. E., McIntosh D. P., Dvorak A. M., Liu J., Oh P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science. 1995 Sep 8;269(5229):1435–1439. doi: 10.1126/science.7660128. [DOI] [PubMed] [Google Scholar]
  30. Schnitzer J. E., Oh P., Jacobson B. S., Dvorak A. M. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1759–1763. doi: 10.1073/pnas.92.5.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sciorra V. A., Morris A. J. Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Mol Biol Cell. 1999 Nov;10(11):3863–3876. doi: 10.1091/mbc.10.11.3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stolz D. B., Jacobson B. S. Examination of transcellular membrane protein polarity of bovine aortic endothelial cells in vitro using the cationic colloidal silica microbead membrane-isolation procedure. J Cell Sci. 1992 Sep;103(Pt 1):39–51. doi: 10.1242/jcs.103.1.39. [DOI] [PubMed] [Google Scholar]
  33. Stukey J., Carman G. M. Identification of a novel phosphatase sequence motif. Protein Sci. 1997 Feb;6(2):469–472. doi: 10.1002/pro.5560060226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Volonte D., Galbiati F., Lisanti M. P. Visualization of caveolin-1, a caveolar marker protein, in living cells using green fluorescent protein (GFP) chimeras. The subcellular distribution of caveolin-1 is modulated by cell-cell contact. FEBS Lett. 1999 Feb 26;445(2-3):431–439. doi: 10.1016/s0014-5793(99)00164-7. [DOI] [PubMed] [Google Scholar]
  35. Waggoner D. W., Gómez-Muñoz A., Dewald J., Brindley D. N. Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. J Biol Chem. 1996 Jul 12;271(28):16506–16509. doi: 10.1074/jbc.271.28.16506. [DOI] [PubMed] [Google Scholar]
  36. Waggoner D. W., Martin A., Dewald J., Gómez-Muñoz A., Brindley D. N. Purification and characterization of novel plasma membrane phosphatidate phosphohydrolase from rat liver. J Biol Chem. 1995 Aug 18;270(33):19422–19429. doi: 10.1074/jbc.270.33.19422. [DOI] [PubMed] [Google Scholar]
  37. Walton P. A., Possmayer F. Mg2-dependent phosphatidate phosphohydrolase of rat lung: development of an assay employing a defined chemical substrate which reflects the phosphohydrolase activity measured using membrane-bound substrate. Anal Biochem. 1985 Dec;151(2):479–486. doi: 10.1016/0003-2697(85)90208-8. [DOI] [PubMed] [Google Scholar]
  38. Walton P. A., Possmayer F. Translocation of Mg2+-dependent phosphatidate phosphohydrolase between cytosol and endoplasmic reticulum in a permanent cell line from human lung. Biochem Cell Biol. 1986 Nov;64(11):1135–1140. doi: 10.1139/o86-149. [DOI] [PubMed] [Google Scholar]
  39. Wikenheiser K. A., Vorbroker D. K., Rice W. R., Clark J. C., Bachurski C. J., Oie H. K., Whitsett J. A. Production of immortalized distal respiratory epithelial cell lines from surfactant protein C/simian virus 40 large tumor antigen transgenic mice. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11029–11033. doi: 10.1073/pnas.90.23.11029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Xu J., Love L. M., Singh I., Zhang Q. X., Dewald J., Wang D. A., Fischer D. J., Tigyi G., Berthiaume L. G., Waggoner D. W. Lipid phosphate phosphatase-1 and Ca2+ control lysophosphatidate signaling through EDG-2 receptors. J Biol Chem. 2000 Sep 8;275(36):27520–27530. doi: 10.1074/jbc.M003211200. [DOI] [PubMed] [Google Scholar]
  41. Xu J., Zhang Q. X., Pilquil C., Berthiaume L. G., Waggoner D. W., Brindley D. N. Lipid phosphate phosphatase-1 in the regulation of lysophosphatidate signaling. Ann N Y Acad Sci. 2000 Apr;905:81–90. doi: 10.1111/j.1749-6632.2000.tb06540.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES