Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 15;358(Pt 3):665–671. doi: 10.1042/0264-6021:3580665

Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes.

L A Gustafson 1, M Neeft 1, D J Reijngoud 1, F Kuipers 1, H P Sauerwein 1, J A Romijn 1, A W Herling 1, H J Burger 1, A J Meijer 1
PMCID: PMC1222100  PMID: 11535127

Abstract

We studied the influence of glucose/glucose 6-phosphate cycling on glycogen deposition from glucose in fasted-rat hepatocytes using S4048 and CP320626, specific inhibitors of glucose-6-phosphate translocase and glycogen phosphorylase respectively. The effect of amino acids and oleate was also examined. The following observations were made: (1) with glucose alone, net glycogen production was low. Inhibition of glucose-6-phosphate translocase increased intracellular glucose 6-phosphate (3-fold), glycogen accumulation (5-fold) without change in active (dephosphorylated) glycogen synthase (GSa) activity, and lactate production (4-fold). With both glucose 6-phosphate translocase and glycogen phosphorylase inhibited, glycogen deposition increased 8-fold and approached reported in vivo rates of glycogen deposition during the fasted-->fed transition. Addition of a physiological mixture of amino acids in the presence of glucose increased glycogen accumulation (4-fold) through activation of GS and inhibition of glucose-6-phosphatase flux. Addition of oleate with glucose present decreased glycolytic flux and increased the flux through glucose 6-phosphatase with no change in glycogen deposition. With glucose 6-phosphate translocase inhibited by S4048, oleate increased intracellular glucose 6-phosphate (3-fold) and net glycogen production (1.5-fold), without a major change in GSa activity. It is concluded that glucose cycling in hepatocytes prevents the net accumulation of glycogen from glucose. Amino acids activate GS and inhibit flux through glucose-6-phosphatase, while oleate inhibits glycolysis and stimulates glucose-6-phosphatase flux. Variation in glucose 6-phosphate does not always result in activity changes of GSa. Activation of glucose 6-phosphatase flux by fatty acids may contribute to the increased hepatic glucose production as seen in Type 2 diabetes.

Full Text

The Full Text of this article is available as a PDF (158.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Peak M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem J. 1993 Dec 15;296(Pt 3):785–796. doi: 10.1042/bj2960785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agius L., Tosh D., Peak M. The contribution of pyruvate cycling to loss of [6-3H]glucose during conversion of glucose to glycogen in hepatocytes: effects of insulin, glucose and acinar origin of hepatocytes. Biochem J. 1993 Jan 1;289(Pt 1):255–262. doi: 10.1042/bj2890255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aiston S., Hampson L., Gómez-Foix A. M., Guinovart J. J., Agius L. Hepatic glycogen synthesis is highly sensitive to phosphorylase activity: evidence from metabolic control analysis. J Biol Chem. 2001 Apr 17;276(26):23858–23866. doi: 10.1074/jbc.M101454200. [DOI] [PubMed] [Google Scholar]
  4. Aiston S., Peak M., Agius L. Impaired glycogen synthesis in hepatocytes from Zucker fatty fa/fa rats: the role of increased phosphorylase activity. Diabetologia. 2000 May;43(5):589–597. doi: 10.1007/s001250051348. [DOI] [PubMed] [Google Scholar]
  5. Aiston S., Trinh K. Y., Lange A. J., Newgard C. B., Agius L. Glucose-6-phosphatase overexpression lowers glucose 6-phosphate and inhibits glycogen synthesis and glycolysis in hepatocytes without affecting glucokinase translocation. Evidence against feedback inhibition of glucokinase. J Biol Chem. 1999 Aug 27;274(35):24559–24566. doi: 10.1074/jbc.274.35.24559. [DOI] [PubMed] [Google Scholar]
  6. Baquet A., Hue L., Meijer A. J., van Woerkom G. M., Plomp P. J. Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem. 1990 Jan 15;265(2):955–959. [PubMed] [Google Scholar]
  7. Berry M. N., Phillips J. W., Henly D. C., Clark D. G. Effects of fatty acid oxidation on glucose utilization by isolated hepatocytes. FEBS Lett. 1993 Mar 15;319(1-2):26–30. doi: 10.1016/0014-5793(93)80030-x. [DOI] [PubMed] [Google Scholar]
  8. Bollen M., Keppens S., Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998 Nov 15;336(Pt 1):19–31. doi: 10.1042/bj3360019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Christ B., Jungermann K. Sub-compartmentation of the 'cytosolic' glucose 6-phosphate pool in cultured rat hepatocytes. FEBS Lett. 1987 Sep 14;221(2):375–380. doi: 10.1016/0014-5793(87)80959-6. [DOI] [PubMed] [Google Scholar]
  10. David M., Petit W. A., Laughlin M. R., Shulman R. G., King J. E., Barrett E. J. Simultaneous synthesis and degradation of rat liver glycogen. An in vivo nuclear magnetic resonance spectroscopic study. J Clin Invest. 1990 Aug;86(2):612–617. doi: 10.1172/JCI114752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ercan N., Gannon M. C., Nuttall F. Q. Liver glycogen synthase, phosphorylase, and the glycogen concentration in rats given a glucose load orally: a 24-hour study. Arch Biochem Biophys. 1994 Nov 15;315(1):35–40. doi: 10.1006/abbi.1994.1467. [DOI] [PubMed] [Google Scholar]
  12. Fernández-Novell J. M., Bellido D., Vilaró S., Guinovart J. J. Glucose induces the translocation of glycogen synthase to the cell cortex in rat hepatocytes. Biochem J. 1997 Jan 1;321(Pt 1):227–231. doi: 10.1042/bj3210227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foster J. D., Bode A. M., Nordlie R. C. Time-dependent inhibition of glucose 6-phosphatase by 3-mercaptopicolinic acid. Biochim Biophys Acta. 1994 Oct 19;1208(2):222–228. doi: 10.1016/0167-4838(94)90107-4. [DOI] [PubMed] [Google Scholar]
  14. Gustafson L. A., Jumelle-Laclau M. N., van Woerkom G. M., van Kuilenburg A. B., Meijer A. J. Cell swelling and glycogen metabolism in hepatocytes from fasted rats. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):184–190. doi: 10.1016/s0005-2728(96)00128-4. [DOI] [PubMed] [Google Scholar]
  15. Herling A. W., Burger H., Schubert G., Hemmerle H., Schaefer H., Kramer W. Alterations of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats. Eur J Pharmacol. 1999 Dec 10;386(1):75–82. doi: 10.1016/s0014-2999(99)00748-7. [DOI] [PubMed] [Google Scholar]
  16. Hoover D. J., Lefkowitz-Snow S., Burgess-Henry J. L., Martin W. H., Armento S. J., Stock I. A., McPherson R. K., Genereux P. E., Gibbs E. M., Treadway J. L. Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J Med Chem. 1998 Jul 30;41(16):2934–2938. doi: 10.1021/jm980264k. [DOI] [PubMed] [Google Scholar]
  17. Hue L., Bontemps F., Hers H. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J. 1975 Oct;152(1):105–114. doi: 10.1042/bj1520105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hue L., Maisin L., Rider M. H. Palmitate inhibits liver glycolysis. Involvement of fructose 2,6-bisphosphate in the glucose/fatty acid cycle. Biochem J. 1988 Apr 15;251(2):541–545. doi: 10.1042/bj2510541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kalant N., Parniak M., Lemieux M. Compartmentation of glucose 6-phosphate in hepatocytes. Biochem J. 1987 Dec 15;248(3):927–931. doi: 10.1042/bj2480927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Katz J., Golden S., Wals P. A. Stimulation of hepatic glycogen synthesis by amino acids. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3433–3437. doi: 10.1073/pnas.73.10.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katz J., McGarry J. D. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984 Dec;74(6):1901–1909. doi: 10.1172/JCI111610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Katz J., Wals P. A., Lee W. N. Determination of pathways of glycogen synthesis and the dilution of the three-carbon pool with [U-13C]glucose. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2103–2107. doi: 10.1073/pnas.88.6.2103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lavoinne A., Baquet A., Hue L. Stimulation of glycogen synthesis and lipogenesis by glutamine in isolated rat hepatocytes. Biochem J. 1987 Dec 1;248(2):429–437. doi: 10.1042/bj2480429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Martin W. H., Hoover D. J., Armento S. J., Stock I. A., McPherson R. K., Danley D. E., Stevenson R. W., Barrett E. J., Treadway J. L. Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1776–1781. doi: 10.1073/pnas.95.4.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McGarry J. D., Kuwajima M., Newgard C. B., Foster D. W., Katz J. From dietary glucose to liver glycogen: the full circle round. Annu Rev Nutr. 1987;7:51–73. doi: 10.1146/annurev.nu.07.070187.000411. [DOI] [PubMed] [Google Scholar]
  27. McGarry J. D. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. 1992 Oct 30;258(5083):766–770. doi: 10.1126/science.1439783. [DOI] [PubMed] [Google Scholar]
  28. Meijer A. J., Baquet A., Gustafson L., van Woerkom G. M., Hue L. Mechanism of activation of liver glycogen synthase by swelling. J Biol Chem. 1992 Mar 25;267(9):5823–5828. [PubMed] [Google Scholar]
  29. Meijer A. J., Lof C., Ramos I. C., Verhoeven A. J. Control of ureogenesis. Eur J Biochem. 1985 Apr 1;148(1):189–196. doi: 10.1111/j.1432-1033.1985.tb08824.x. [DOI] [PubMed] [Google Scholar]
  30. Oakes N. D., Cooney G. J., Camilleri S., Chisholm D. J., Kraegen E. W. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes. 1997 Nov;46(11):1768–1774. doi: 10.2337/diab.46.11.1768. [DOI] [PubMed] [Google Scholar]
  31. Ochs R. S., Harris R. A. Mechanism for the oleate stimulation of gluconeogenesis from dihydroxyacetone by hepatocytes from fasted rats. Biochim Biophys Acta. 1986 Apr 8;886(1):40–47. doi: 10.1016/0167-4889(86)90209-0. [DOI] [PubMed] [Google Scholar]
  32. Oikonomakos N. G., Skamnaki V. T., Tsitsanou K. E., Gavalas N. G., Johnson L. N. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure. 2000 Jun 15;8(6):575–584. doi: 10.1016/s0969-2126(00)00144-1. [DOI] [PubMed] [Google Scholar]
  33. Parker J. C., VanVolkenburg M. A., Levy C. B., Martin W. H., Burk S. H., Kwon Y., Giragossian C., Gant T. G., Carpino P. A., McPherson R. K. Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase. Diabetes. 1998 Oct;47(10):1630–1636. doi: 10.2337/diabetes.47.10.1630. [DOI] [PubMed] [Google Scholar]
  34. Peak M., al-Habori M., Agius L. Regulation of glycogen synthesis and glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization in mediating the effects of insulin. Biochem J. 1992 Mar 15;282(Pt 3):797–805. doi: 10.1042/bj2820797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pederson B. A., Nordlie M. A., Foster J. D., Nordlie R. C. Effects of ionic strength and chloride ion on activities of the glucose-6-phosphatase system: regulation of the biosynthetic activity of glucose-6-phosphatase by chloride ion inhibition/deinhibition. Arch Biochem Biophys. 1998 May 1;353(1):141–151. doi: 10.1006/abbi.1998.0642. [DOI] [PubMed] [Google Scholar]
  36. Plomp P. J., Boon L., Caro L. H., van Woekom G. M., Meijer A. J. Stimulation of glycogen synthesis in hepatocytes by added amino acids is related to the total intracellular content of amino acids. Eur J Biochem. 1990 Jul 20;191(1):237–243. doi: 10.1111/j.1432-1033.1990.tb19115.x. [DOI] [PubMed] [Google Scholar]
  37. Ruiz G., Sobrino F., Roca B., Goberna R. Involvement of cyclic AMP-dependent protein kinase on the phosphorylase kinase inhibition by glucose-6-phosphate in adipose tissue extracts. Horm Metab Res. 1986 Jan;18(1):18–21. doi: 10.1055/s-2007-1012215. [DOI] [PubMed] [Google Scholar]
  38. Seoane J., Gómez-Foix A. M., O'Doherty R. M., Gómez-Ara C., Newgard C. B., Guinovart J. J. Glucose 6-phosphate produced by glucokinase, but not hexokinase I, promotes the activation of hepatic glycogen synthase. J Biol Chem. 1996 Sep 27;271(39):23756–23760. doi: 10.1074/jbc.271.39.23756. [DOI] [PubMed] [Google Scholar]
  39. Shulman G. I., Landau B. R. Pathways of glycogen repletion. Physiol Rev. 1992 Oct;72(4):1019–1035. doi: 10.1152/physrev.1992.72.4.1019. [DOI] [PubMed] [Google Scholar]
  40. Shulman G. I., Rothman D. L., Chung Y., Rossetti L., Petit W. A., Jr, Barrett E. J., Shulman R. G. 13C NMR studies of glycogen turnover in the perfused rat liver. J Biol Chem. 1988 Apr 15;263(11):5027–5029. [PubMed] [Google Scholar]
  41. Tappy L., Tounian P., Paquot N. Autoregulation of endogenous glucose production in man. Biochem Soc Trans. 1997 Feb;25(1):11–13. doi: 10.1042/bst0250011. [DOI] [PubMed] [Google Scholar]
  42. Toyoda Y., Ito Y., Yoshie S., Miwa I. Shuttling of glucokinase between the nucleus and the cytoplasm in primary cultures of rat hepatocytes: possible involvement in the regulation of the glucose metabolism. Arch Histol Cytol. 1997 Aug;60(3):307–316. doi: 10.1679/aohc.60.307. [DOI] [PubMed] [Google Scholar]
  43. Uhing R. J., Janski A. M., Graves D. J. The effect of solvents on nucleotide regulation of glycogen phosphorylase. J Biol Chem. 1979 May 10;254(9):3166–3169. [PubMed] [Google Scholar]
  44. Wals P. A., Katz J. Glucose-glucose 6-phosphate cycling in hepatocytes determined by incorporation of 3HOH and D2O. Effect of glycosyns and fructose. J Biol Chem. 1994 Jul 15;269(28):18343–18352. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES