Abstract
Max is the central component of the Myc/Max/Mad network of transcription factors that regulate growth, differentiation and apoptosis. Whereas the Myc and Mad genes and proteins are highly regulated, Max expression is constitutive and no post-translational regulation is known. We have found that Max is targeted during Fas-induced apoptosis. Max is first dephosphorylated and subsequently cleaved by caspases. Two specific cleavage sites for caspases in Max were identified, one at IEVE(10) decreasing S and one at SAFD(135) decreasing G near the C-terminus, which are cleaved in vitro by caspase-5 and caspase-7 respectively. Mutational analysis indicates that both sites are also used in vivo. Thus Max represents the first caspase-5 substrate. The unusual cleavage after a glutamic acid residue is observed only with full-length, DNA-binding competent Max protein but not with corresponding peptides, suggesting that structural determinants might be important for this activity. Furthermore, cleavage by caspase-5 is inhibited by the protein kinase CK2-mediated phosphorylation of Max at Ser-11, a previously mapped phosphorylation site in vivo. These findings suggest that Fas-mediated dephosphorylation of Max is required for cleavage by caspase-5. The modifications that occur on Max in response to Fas signalling affect the DNA-binding activity of Max/Max homodimers. Taken together, our findings uncover three distinct processes, namely dephosphorylation and cleavage by caspase-5 and caspase-7, that target Max during Fas-mediated apoptosis, suggesting the regulation of the Myc/Max/Mad network through its central component.
Full Text
The Full Text of this article is available as a PDF (397.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amati B., Frank S. R., Donjerkovic D., Taubert S. Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim Biophys Acta. 2001 Mar 21;1471(3):M135–M145. doi: 10.1016/s0304-419x(01)00020-8. [DOI] [PubMed] [Google Scholar]
- An B., Dou Q. P. Cleavage of retinoblastoma protein during apoptosis: an interleukin 1 beta-converting enzyme-like protease as candidate. Cancer Res. 1996 Feb 1;56(3):438–442. [PubMed] [Google Scholar]
- Andera L., Wasylyk B. Transcription abnormalities potentiate apoptosis of normal human fibroblasts. Mol Med. 1997 Dec;3(12):852–863. [PMC free article] [PubMed] [Google Scholar]
- Asai A., Qiu J. h., Narita Y., Chi S., Saito N., Shinoura N., Hamada H., Kuchino Y., Kirino T. High level calcineurin activity predisposes neuronal cells to apoptosis. J Biol Chem. 1999 Nov 26;274(48):34450–34458. doi: 10.1074/jbc.274.48.34450. [DOI] [PubMed] [Google Scholar]
- Austen M., Lüscher B., Lüscher-Firzlaff J. M. Characterization of the transcriptional regulator YY1. The bipartite transactivation domain is independent of interaction with the TATA box-binding protein, transcription factor IIB, TAFII55, or cAMP-responsive element-binding protein (CPB)-binding protein. J Biol Chem. 1997 Jan 17;272(3):1709–1717. doi: 10.1074/jbc.272.3.1709. [DOI] [PubMed] [Google Scholar]
- Barkett M., Xue D., Horvitz H. R., Gilmore T. D. Phosphorylation of IkappaB-alpha inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem. 1997 Nov 21;272(47):29419–29422. doi: 10.1074/jbc.272.47.29419. [DOI] [PubMed] [Google Scholar]
- Berberich S. J., Cole M. D. Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev. 1992 Feb;6(2):166–176. doi: 10.1101/gad.6.2.166. [DOI] [PubMed] [Google Scholar]
- Bertolotto C., Ricci J. E., Luciano F., Mari B., Chambard J. C., Auberger P. Cleavage of the serum response factor during death receptor-induced apoptosis results in an inhibition of the c-FOS promoter transcriptional activity. J Biol Chem. 2000 Apr 28;275(17):12941–12947. doi: 10.1074/jbc.275.17.12941. [DOI] [PubMed] [Google Scholar]
- Bousset K., Henriksson M., Lüscher-Firzlaff J. M., Litchfield D. W., Lüscher B. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene. 1993 Dec;8(12):3211–3220. [PubMed] [Google Scholar]
- Cerni C., Bousset K., Seelos C., Burkhardt H., Henriksson M., Lüscher B. Differential effects by Mad and Max on transformation by cellular and viral oncoproteins. Oncogene. 1995 Aug 3;11(3):587–596. [PubMed] [Google Scholar]
- Chang H. Y., Nishitoh H., Yang X., Ichijo H., Baltimore D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science. 1998 Sep 18;281(5384):1860–1863. doi: 10.1126/science.281.5384.1860. [DOI] [PubMed] [Google Scholar]
- Cryns V., Yuan J. Proteases to die for. Genes Dev. 1998 Jun 1;12(11):1551–1570. doi: 10.1101/gad.12.11.1551. [DOI] [PubMed] [Google Scholar]
- Earnshaw W. C., Martins L. M., Kaufmann S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424. doi: 10.1146/annurev.biochem.68.1.383. [DOI] [PubMed] [Google Scholar]
- Fattman C. L., An B., Dou Q. P. Characterization of interior cleavage of retinoblastoma protein in apoptosis. J Cell Biochem. 1997 Dec 1;67(3):399–408. [PubMed] [Google Scholar]
- Faust M., Montenarh M. Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res. 2000 Sep;301(3):329–340. doi: 10.1007/s004410000256. [DOI] [PubMed] [Google Scholar]
- Foley K. P., McArthur G. A., Quéva C., Hurlin P. J., Soriano P., Eisenman R. N. Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. EMBO J. 1998 Feb 2;17(3):774–785. doi: 10.1093/emboj/17.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fésüs L. Inducible gene expression in apoptosis. Cell Death Differ. 1999 Dec;6(12):1144–1145. doi: 10.1038/sj.cdd.4400608. [DOI] [PubMed] [Google Scholar]
- Gehring S., Rottmann S., Menkel A. R., Mertsching J., Krippner-Heidenreich A., Lüscher B. Inhibition of proliferation and apoptosis by the transcriptional repressor Mad1. Repression of Fas-induced caspase-8 activation. J Biol Chem. 2000 Apr 7;275(14):10413–10420. doi: 10.1074/jbc.275.14.10413. [DOI] [PubMed] [Google Scholar]
- Gerner C., Frohwein U., Gotzmann J., Bayer E., Gelbmann D., Bursch W., Schulte-Hermann R. The Fas-induced apoptosis analyzed by high throughput proteome analysis. J Biol Chem. 2000 Dec 15;275(50):39018–39026. doi: 10.1074/jbc.M006495200. [DOI] [PubMed] [Google Scholar]
- Grandori C., Cowley S. M., James L. P., Eisenman R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000;16:653–699. doi: 10.1146/annurev.cellbio.16.1.653. [DOI] [PubMed] [Google Scholar]
- Graves J. D., Gotoh Y., Draves K. E., Ambrose D., Han D. K., Wright M., Chernoff J., Clark E. A., Krebs E. G. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 1998 Apr 15;17(8):2224–2234. doi: 10.1093/emboj/17.8.2224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerra B., Boldyreff B., Sarno S., Cesaro L., Issinger O. G., Pinna L. A. CK2: a protein kinase in need of control. Pharmacol Ther. 1999 May-Jun;82(2-3):303–313. doi: 10.1016/s0163-7258(98)00064-3. [DOI] [PubMed] [Google Scholar]
- Hawkins C. J., Yoo S. J., Peterson E. P., Wang S. L., Vernooy S. Y., Hay B. A. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J Biol Chem. 2000 Sep 1;275(35):27084–27093. doi: 10.1074/jbc.M000869200. [DOI] [PubMed] [Google Scholar]
- Henriksson M., Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109–182. doi: 10.1016/s0065-230x(08)60353-x. [DOI] [PubMed] [Google Scholar]
- Hueber A. O., Evan G. I. Traps to catch unwary oncogenes. Trends Genet. 1998 Sep;14(9):364–367. doi: 10.1016/s0168-9525(98)01520-0. [DOI] [PubMed] [Google Scholar]
- Keller D. M., Zeng X., Wang Y., Zhang Q. H., Kapoor M., Shu H., Goodman R., Lozano G., Zhao Y., Lu H. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell. 2001 Feb;7(2):283–292. doi: 10.1016/s1097-2765(01)00176-9. [DOI] [PubMed] [Google Scholar]
- King P., Goodbourn S. STAT1 is inactivated by a caspase. J Biol Chem. 1998 Apr 10;273(15):8699–8704. doi: 10.1074/jbc.273.15.8699. [DOI] [PubMed] [Google Scholar]
- Li D., Meier U. T., Dobrowolska G., Krebs E. G. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem. 1997 Feb 7;272(6):3773–3779. doi: 10.1074/jbc.272.6.3773. [DOI] [PubMed] [Google Scholar]
- Litchfield D. W., Dobrowolska G., Krebs E. G. Regulation of casein kinase II by growth factors: a reevaluation. Cell Mol Biol Res. 1994;40(5-6):373–381. [PubMed] [Google Scholar]
- Litchfield D. W., Lüscher B., Lozeman F. J., Eisenman R. N., Krebs E. G. Phosphorylation of casein kinase II by p34cdc2 in vitro and at mitosis. J Biol Chem. 1992 Jul 15;267(20):13943–13951. [PubMed] [Google Scholar]
- Lüscher B., Christenson E., Litchfield D. W., Krebs E. G., Eisenman R. N. Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature. 1990 Apr 5;344(6266):517–522. doi: 10.1038/344517a0. [DOI] [PubMed] [Google Scholar]
- Lüscher B., Larsson L. G. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene. 1999 May 13;18(19):2955–2966. doi: 10.1038/sj.onc.1202750. [DOI] [PubMed] [Google Scholar]
- Magnusson C., Vaux D. L. Signalling by CD95 and TNF receptors: not only life and death. Immunol Cell Biol. 1999 Feb;77(1):41–46. doi: 10.1046/j.1440-1711.1999.00800.x. [DOI] [PubMed] [Google Scholar]
- Meier U. T., Blobel G. Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell. 1992 Jul 10;70(1):127–138. doi: 10.1016/0092-8674(92)90539-o. [DOI] [PubMed] [Google Scholar]
- Mok C. L., Gil-Gómez G., Williams O., Coles M., Taga S., Tolaini M., Norton T., Kioussis D., Brady H. J. Bad can act as a key regulator of T cell apoptosis and T cell development. J Exp Med. 1999 Feb 1;189(3):575–586. doi: 10.1084/jem.189.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morana S. J., Wolf C. M., Li J., Reynolds J. E., Brown M. K., Eastman A. The involvement of protein phosphatases in the activation of ICE/CED-3 protease, intracellular acidification, DNA digestion, and apoptosis. J Biol Chem. 1996 Jul 26;271(30):18263–18271. doi: 10.1074/jbc.271.30.18263. [DOI] [PubMed] [Google Scholar]
- Piedrafita F. J., Pfahl M. Retinoid-induced apoptosis and Sp1 cleavage occur independently of transcription and require caspase activation. Mol Cell Biol. 1997 Nov;17(11):6348–6358. doi: 10.1128/mcb.17.11.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinna L. A., Meggio F. Protein kinase CK2 ("casein kinase-2") and its implication in cell division and proliferation. Prog Cell Cycle Res. 1997;3:77–97. doi: 10.1007/978-1-4615-5371-7_7. [DOI] [PubMed] [Google Scholar]
- Prendergast G. C. Mechanisms of apoptosis by c-Myc. Oncogene. 1999 May 13;18(19):2967–2987. doi: 10.1038/sj.onc.1202727. [DOI] [PubMed] [Google Scholar]
- Quéva C., McArthur G. A., Iritani B. M., Eisenman R. N. Targeted deletion of the S-phase-specific Myc antagonist Mad3 sensitizes neuronal and lymphoid cells to radiation-induced apoptosis. Mol Cell Biol. 2001 Feb;21(3):703–712. doi: 10.1128/MCB.21.3.703-712.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rong P., Bennie A. M., Epa W. R., Barrett G. L. Nerve growth factor determines survival and death of PC12 cells by regulation of the bcl-x, bax, and caspase-3 genes. J Neurochem. 1999 Jun;72(6):2294–2300. doi: 10.1046/j.1471-4159.1999.0722294.x. [DOI] [PubMed] [Google Scholar]
- Rutjes S. A., Utz P. J., van der Heijden A., Broekhuis C., van Venrooij W. J., Pruijn G. J. The La (SS-B) autoantigen, a key protein in RNA biogenesis, is dephosphorylated and cleaved early during apoptosis. Cell Death Differ. 1999 Oct;6(10):976–986. doi: 10.1038/sj.cdd.4400571. [DOI] [PubMed] [Google Scholar]
- Santoro M. F., Annand R. R., Robertson M. M., Peng Y. W., Brady M. J., Mankovich J. A., Hackett M. C., Ghayur T., Walter G., Wong W. W. Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis. J Biol Chem. 1998 May 22;273(21):13119–13128. doi: 10.1074/jbc.273.21.13119. [DOI] [PubMed] [Google Scholar]
- Sayed M., Kim S. O., Salh B. S., Issinger O. G., Pelech S. L. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem. 2000 Jun 2;275(22):16569–16573. doi: 10.1074/jbc.M000312200. [DOI] [PubMed] [Google Scholar]
- Schulze-Osthoff K., Ferrari D., Los M., Wesselborg S., Peter M. E. Apoptosis signaling by death receptors. Eur J Biochem. 1998 Jun 15;254(3):439–459. doi: 10.1046/j.1432-1327.1998.2540439.x. [DOI] [PubMed] [Google Scholar]
- Shen-Li H., O'Hagan R. C., Hou H., Jr, Horner J. W., 2nd, Lee H. W., DePinho R. A. Essential role for Max in early embryonic growth and development. Genes Dev. 2000 Jan 1;14(1):17–22. [PMC free article] [PubMed] [Google Scholar]
- Sommer A., Bousset K., Kremmer E., Austen M., Lüscher B. Identification and characterization of specific DNA-binding complexes containing members of the Myc/Max/Mad network of transcriptional regulators. J Biol Chem. 1998 Mar 20;273(12):6632–6642. doi: 10.1074/jbc.273.12.6632. [DOI] [PubMed] [Google Scholar]
- Srinivasula S. M., Hegde R., Saleh A., Datta P., Shiozaki E., Chai J., Lee R. A., Robbins P. D., Fernandes-Alnemri T., Shi Y. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature. 2001 Mar 1;410(6824):112–116. doi: 10.1038/35065125. [DOI] [PubMed] [Google Scholar]
- Takekawa M., Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998 Nov 13;95(4):521–530. doi: 10.1016/s0092-8674(00)81619-0. [DOI] [PubMed] [Google Scholar]
- Talanian R. V., Quinlan C., Trautz S., Hackett M. C., Mankovich J. A., Banach D., Ghayur T., Brady K. D., Wong W. W. Substrate specificities of caspase family proteases. J Biol Chem. 1997 Apr 11;272(15):9677–9682. doi: 10.1074/jbc.272.15.9677. [DOI] [PubMed] [Google Scholar]
- Tang D., Lahti J. M., Grenet J., Kidd V. J. Cycloheximide-induced T-cell death is mediated by a Fas-associated death domain-dependent mechanism. J Biol Chem. 1999 Mar 12;274(11):7245–7252. doi: 10.1074/jbc.274.11.7245. [DOI] [PubMed] [Google Scholar]
- Thole H. H., Maschler I., Jungblut P. W. Surface mapping of the ligand-filled C-terminal half of the porcine estradiol receptor by restricted proteolysis. Eur J Biochem. 1995 Jul 15;231(2):510–516. doi: 10.1111/j.1432-1033.1995.tb20726.x. [DOI] [PubMed] [Google Scholar]
- Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science. 1998 Aug 28;281(5381):1312–1316. doi: 10.1126/science.281.5381.1312. [DOI] [PubMed] [Google Scholar]
- Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
- Vervoorts J., Lüscher B. DNA binding of Myc/Max/Mad network complexes to oligonucleotides containing two E box elements: c-Myc/Max heterodimers do not bind DNA cooperatively. Biol Chem. 1999 Sep;380(9):1121–1126. doi: 10.1515/BC.1999.140. [DOI] [PubMed] [Google Scholar]
- Walter J., Schindzielorz A., Grünberg J., Haass C. Phosphorylation of presenilin-2 regulates its cleavage by caspases and retards progression of apoptosis. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1391–1396. doi: 10.1073/pnas.96.4.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X., Zelenski N. G., Yang J., Sakai J., Brown M. S., Goldstein J. L. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 1996 Mar 1;15(5):1012–1020. [PMC free article] [PubMed] [Google Scholar]
- Weinmann P., Gaehtgens P., Walzog B. Bcl-Xl- and Bax-alpha-mediated regulation of apoptosis of human neutrophils via caspase-3. Blood. 1999 May 1;93(9):3106–3115. [PubMed] [Google Scholar]
- Wyllie A. H. The genetic regulation of apoptosis. Curr Opin Genet Dev. 1995 Feb;5(1):97–104. doi: 10.1016/s0959-437x(95)90060-8. [DOI] [PubMed] [Google Scholar]