Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 15;358(Pt 3):737–745. doi: 10.1042/0264-6021:3580737

Multimerization of monocyte chemoattractant protein-1 is not required for glycosaminoglycan-dependent transendothelial chemotaxis.

S Ali 1, A C Palmer 1, S J Fritchley 1, Y Maley 1, J A Kirby 1
PMCID: PMC1222107  PMID: 11535134

Abstract

Chemokines interact with specific G-protein-coupled cell-surface receptors and with glycosaminoglycans (GAGs), such as heparan sulphate. Although chemokines often form multimers in solution, this process may be enhanced following interaction with GAGs on the cell surface, or within the extracellular matrix. However, the significance of multimerization for chemokine function remains controversial. In the present study, a fusion protein was prepared between the prototypical human CC chemokine, monocyte chemoattractant protein-1 (MCP-1; also known as CCL-2) and a large secreted placental alkaline phosphatase (SEAP) moiety. This fusion protein (MCP-1-SEAP) remained monomeric under conditions that promote oligomerization of the native chemokine. Radioligand binding showed that both native MCP-1 and MCP-1-SEAP competed for the same site on the surface of HEK-293 cells expressing the CCR2b chemokine receptor. The interaction between either chemokine species and endothelial cell surface GAGs was antagonized by the addition of the heparan sulphate-like molecule, heparin. Both MCP-1 and MCP-1-SEAP induced a Ca(2+)-flux in the THP-1 monocytic cell line, and were equally effective at promoting transendothelial chemotaxis of mononuclear immune cells, with maximal migration being produced by treatment with 12 nM of either species. In each case this chemotactic response was almost completely antagonized by the addition of heparin. The importance of interaction between either native MCP-1 or MCP-1-SEAP and cell-surface GAGs for transcellular migration was demonstrated by the almost complete absence of leucocyte chemotaxis across monolayers of GAG-deficient mutant cells. In summary, this study shows that multimerization is neither necessary for, nor potentiates, the biological activity of MCP-1. However, the results do clearly demonstrate the importance of the interaction between MCP-1 and cell-surface heparan sulphate for transmonolayer leucocyte chemotaxis.

Full Text

The Full Text of this article is available as a PDF (206.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S., Palmer A. C., Banerjee B., Fritchley S. J., Kirby J. A. Examination of the function of RANTES, MIP-1alpha, and MIP-1beta following interaction with heparin-like glycosaminoglycans. J Biol Chem. 2000 Apr 21;275(16):11721–11727. doi: 10.1074/jbc.275.16.11721. [DOI] [PubMed] [Google Scholar]
  2. Antony V. B., Godbey S. W., Kunkel S. L., Hott J. W., Hartman D. L., Burdick M. D., Strieter R. M. Recruitment of inflammatory cells to the pleural space. Chemotactic cytokines, IL-8, and monocyte chemotactic peptide-1 in human pleural fluids. J Immunol. 1993 Dec 15;151(12):7216–7223. [PubMed] [Google Scholar]
  3. Arai H., Monteclaro F. S., Tsou C. L., Franci C., Charo I. F. Dissociation of chemotaxis from agonist-induced receptor internalization in a lymphocyte cell line transfected with CCR2B. Evidence that directed migration does not require rapid modulation of signaling at the receptor level. J Biol Chem. 1997 Oct 3;272(40):25037–25042. doi: 10.1074/jbc.272.40.25037. [DOI] [PubMed] [Google Scholar]
  4. Baggiolini M., Dewald B., Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705. doi: 10.1146/annurev.immunol.15.1.675. [DOI] [PubMed] [Google Scholar]
  5. Berger J., Hauber J., Hauber R., Geiger R., Cullen B. R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene. 1988 Jun 15;66(1):1–10. doi: 10.1016/0378-1119(88)90219-3. [DOI] [PubMed] [Google Scholar]
  6. Charo I. F., Myers S. J., Herman A., Franci C., Connolly A. J., Coughlin S. R. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2752–2756. doi: 10.1073/pnas.91.7.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas M. S., Rix D. A., Dark J. H., Talbot D., Kirby J. A. Examination of the mechanism by which heparin antagonizes activation of a model endothelium by interferon-gamma (IFN-gamma). Clin Exp Immunol. 1997 Mar;107(3):578–584. doi: 10.1046/j.1365-2249.1997.3141206.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esko J. D., Stewart T. E., Taylor W. H. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A. 1985 May;82(10):3197–3201. doi: 10.1073/pnas.82.10.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goda S., Imai T., Yoshie O., Yoneda O., Inoue H., Nagano Y., Okazaki T., Imai H., Bloom E. T., Domae N. CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. J Immunol. 2000 Apr 15;164(8):4313–4320. doi: 10.4049/jimmunol.164.8.4313. [DOI] [PubMed] [Google Scholar]
  10. Gong J. H., Uguccioni M., Dewald B., Baggiolini M., Clark-Lewis I. RANTES and MCP-3 antagonists bind multiple chemokine receptors. J Biol Chem. 1996 May 3;271(18):10521–10527. doi: 10.1074/jbc.271.18.10521. [DOI] [PubMed] [Google Scholar]
  11. Graham G. J., MacKenzie J., Lowe S., Tsang M. L., Weatherbee J. A., Issacson A., Medicherla J., Fang F., Wilkinson P. C., Pragnell I. B. Aggregation of the chemokine MIP-1 alpha is a dynamic and reversible phenomenon. Biochemical and biological analyses. J Biol Chem. 1994 Feb 18;269(7):4974–4978. [PubMed] [Google Scholar]
  12. Gronenborn A. M., Clore G. M. Modeling the three-dimensional structure of the monocyte chemo-attractant and activating protein MCAF/MCP-1 on the basis of the solution structure of interleukin-8. Protein Eng. 1991 Feb;4(3):263–269. doi: 10.1093/protein/4.3.263. [DOI] [PubMed] [Google Scholar]
  13. Handel T. M., Domaille P. J. Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry. 1996 May 28;35(21):6569–6584. doi: 10.1021/bi9602270. [DOI] [PubMed] [Google Scholar]
  14. Hemmerich S., Paavola C., Bloom A., Bhakta S., Freedman R., Grunberger D., Krstenansky J., Lee S., McCarley D., Mulkins M. Identification of residues in the monocyte chemotactic protein-1 that contact the MCP-1 receptor, CCR2. Biochemistry. 1999 Oct 5;38(40):13013–13025. doi: 10.1021/bi991029m. [DOI] [PubMed] [Google Scholar]
  15. Hoogewerf A. J., Kuschert G. S., Proudfoot A. E., Borlat F., Clark-Lewis I., Power C. A., Wells T. N. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry. 1997 Nov 4;36(44):13570–13578. doi: 10.1021/bi971125s. [DOI] [PubMed] [Google Scholar]
  16. Horcher M., Rot A., Aschauer H., Besemer J. IL-8 derivatives with a reduced potential to form homodimers are fully active in vitro and in vivo. Cytokine. 1998 Jan;10(1):1–12. doi: 10.1006/cyto.1997.0251. [DOI] [PubMed] [Google Scholar]
  17. Hosaka S., Akahoshi T., Wada C., Kondo H. Expression of the chemokine superfamily in rheumatoid arthritis. Clin Exp Immunol. 1994 Sep;97(3):451–457. doi: 10.1111/j.1365-2249.1994.tb06109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ihrcke N. S., Wrenshall L. E., Lindman B. J., Platt J. L. Role of heparan sulfate in immune system-blood vessel interactions. Immunol Today. 1993 Oct;14(10):500–505. doi: 10.1016/0167-5699(93)90265-M. [DOI] [PubMed] [Google Scholar]
  19. Jarnagin K., Grunberger D., Mulkins M., Wong B., Hemmerich S., Paavola C., Bloom A., Bhakta S., Diehl F., Freedman R. Identification of surface residues of the monocyte chemotactic protein 1 that affect signaling through the receptor CCR2. Biochemistry. 1999 Dec 7;38(49):16167–16177. doi: 10.1021/bi9912239. [DOI] [PubMed] [Google Scholar]
  20. Kim E. E., Wyckoff H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol. 1991 Mar 20;218(2):449–464. doi: 10.1016/0022-2836(91)90724-k. [DOI] [PubMed] [Google Scholar]
  21. Koch A. E., Kunkel S. L., Harlow L. A., Johnson B., Evanoff H. L., Haines G. K., Burdick M. D., Pope R. M., Strieter R. M. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest. 1992 Sep;90(3):772–779. doi: 10.1172/JCI115950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koopmann W., Krangel M. S. Identification of a glycosaminoglycan-binding site in chemokine macrophage inflammatory protein-1alpha. J Biol Chem. 1997 Apr 11;272(15):10103–10109. doi: 10.1074/jbc.272.15.10103. [DOI] [PubMed] [Google Scholar]
  23. Kuschert G. S., Coulin F., Power C. A., Proudfoot A. E., Hubbard R. E., Hoogewerf A. J., Wells T. N. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry. 1999 Sep 28;38(39):12959–12968. doi: 10.1021/bi990711d. [DOI] [PubMed] [Google Scholar]
  24. LeBaron R. G., Esko J. D., Woods A., Johansson S., Hök M. Adhesion of glycosaminoglycan-deficient chinese hamster ovary cell mutants to fibronectin substrata. J Cell Biol. 1988 Mar;106(3):945–952. doi: 10.1083/jcb.106.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leonard E. J., Yoshimura T. Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today. 1990 Mar;11(3):97–101. doi: 10.1016/0167-5699(90)90035-8. [DOI] [PubMed] [Google Scholar]
  26. Li Y. S., Shyy Y. J., Wright J. G., Valente A. J., Cornhill J. F., Kolattukudy P. E. The expression of monocyte chemotactic protein (MCP-1) in human vascular endothelium in vitro and in vivo. Mol Cell Biochem. 1993 Sep 8;126(1):61–68. doi: 10.1007/BF01772208. [DOI] [PubMed] [Google Scholar]
  27. Lodi P. J., Garrett D. S., Kuszewski J., Tsang M. L., Weatherbee J. A., Leonard W. J., Gronenborn A. M., Clore G. M. High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science. 1994 Mar 25;263(5154):1762–1767. doi: 10.1126/science.8134838. [DOI] [PubMed] [Google Scholar]
  28. Lubkowski J., Bujacz G., Boqué L., Domaille P. J., Handel T. M., Wlodawer A. The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Biol. 1997 Jan;4(1):64–69. doi: 10.1038/nsb0197-64. [DOI] [PubMed] [Google Scholar]
  29. Luster A. D., Greenberg S. M., Leder P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med. 1995 Jul 1;182(1):219–231. doi: 10.1084/jem.182.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Paavola C. D., Hemmerich S., Grunberger D., Polsky I., Bloom A., Freedman R., Mulkins M., Bhakta S., McCarley D., Wiesent L. Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem. 1998 Dec 11;273(50):33157–33165. doi: 10.1074/jbc.273.50.33157. [DOI] [PubMed] [Google Scholar]
  31. Paolini J. F., Willard D., Consler T., Luther M., Krangel M. S. The chemokines IL-8, monocyte chemoattractant protein-1, and I-309 are monomers at physiologically relevant concentrations. J Immunol. 1994 Sep 15;153(6):2704–2717. [PubMed] [Google Scholar]
  32. Ping D., Boekhoudt G. H., Rogers E. M., Boss J. M. Nuclear factor-kappa B p65 mediates the assembly and activation of the TNF-responsive element of the murine monocyte chemoattractant-1 gene. J Immunol. 1999 Jan 15;162(2):727–734. [PubMed] [Google Scholar]
  33. Proudfoot A. E., Power C. A., Hoogewerf A. J., Montjovent M. O., Borlat F., Offord R. E., Wells T. N. Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem. 1996 Feb 2;271(5):2599–2603. doi: 10.1074/jbc.271.5.2599. [DOI] [PubMed] [Google Scholar]
  34. Rajarathnam K., Sykes B. D., Kay C. M., Dewald B., Geiser T., Baggiolini M., Clark-Lewis I. Neutrophil activation by monomeric interleukin-8. Science. 1994 Apr 1;264(5155):90–92. doi: 10.1126/science.8140420. [DOI] [PubMed] [Google Scholar]
  35. Robertson H., Morley A. R., Talbot D., Callanan K., Kirby J. A. Renal allograft rejection: beta-chemokine involvement in the development of tubulitis. Transplantation. 2000 Feb 27;69(4):684–687. doi: 10.1097/00007890-200002270-00039. [DOI] [PubMed] [Google Scholar]
  36. Robinson E., Keystone E. C., Schall T. J., Gillett N., Fish E. N. Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells. Clin Exp Immunol. 1995 Sep;101(3):398–407. doi: 10.1111/j.1365-2249.1995.tb03126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rodríguez-Frade J. M., Vila-Coro A. J., de Ana A. M., Albar J. P., Martínez-A C., Mellado M. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3628–3633. doi: 10.1073/pnas.96.7.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Roghani M., Mansukhani A., Dell'Era P., Bellosta P., Basilico C., Rifkin D. B., Moscatelli D. Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J Biol Chem. 1994 Feb 11;269(6):3976–3984. [PubMed] [Google Scholar]
  39. Rothenberg M. E., MacLean J. A., Pearlman E., Luster A. D., Leder P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med. 1997 Feb 17;185(4):785–790. doi: 10.1084/jem.185.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Simmons G., Clapham P. R., Picard L., Offord R. E., Rosenkilde M. M., Schwartz T. W., Buser R., Wells T. N., Proudfoot A. E. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 1997 Apr 11;276(5310):276–279. doi: 10.1126/science.276.5310.276. [DOI] [PubMed] [Google Scholar]
  41. Sánchez-Madrid F., del Pozo M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 1999 Feb 1;18(3):501–511. doi: 10.1093/emboj/18.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Witt D. P., Lander A. D. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol. 1994 May 1;4(5):394–400. doi: 10.1016/s0960-9822(00)00088-9. [DOI] [PubMed] [Google Scholar]
  43. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]
  44. Yen H., Zhang Y., Penfold S., Rollins B. J. MCP-1-mediated chemotaxis requires activation of non-overlapping signal transduction pathways. J Leukoc Biol. 1997 Apr;61(4):529–532. doi: 10.1002/jlb.61.4.529. [DOI] [PubMed] [Google Scholar]
  45. Zhang Y., Rollins B. J. A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer. Mol Cell Biol. 1995 Sep;15(9):4851–4855. doi: 10.1128/mcb.15.9.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES