Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 15;358(Pt 3):783–790. doi: 10.1042/0264-6021:3580783

Phosphorylation of the leucocyte NADPH oxidase subunit p47(phox) by casein kinase 2: conformation-dependent phosphorylation and modulation of oxidase activity.

H S Park 1, S M Lee 1, J H Lee 1, Y S Kim 1, Y S Bae 1, J W Park 1
PMCID: PMC1222112  PMID: 11535139

Abstract

The leucocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyses the reduction of oxygen to O(-)(2) at the expense of NADPH. The enzyme is dormant in resting neutrophils but becomes active when the cells are exposed to the appropriate stimuli. During oxidase activation, the highly basic cytosolic oxidase component p47(phox) becomes phosphorylated on several serines and migrates to the plasma membrane. Protein kinase CK2 is an essential serine/threonine kinase present in all eukaryotic organisms. The leucocyte NADPH oxidase subunit p47(phox) has several putative CK2 phosphorylation sites. In the present study, we report that CK2 is able to catalyse the phosphorylation of p47(phox) in vitro. Phosphoamino acid analysis of phosphorylated p47(phox) by CK2 indicated that the phosphorylation occurs on serine residues. CNBr mapping and phosphorylation of peptides containing the putative site of CK2 indicated that the main phosphorylated residues are Ser-208 and Ser-283 in the Src homology 3 (SH3) domains, and Ser-348 in the C-terminal domain of p47(phox). Dependence of phosphorylation on the conformation of p47(phox) is supported by the finding that p47(phox) undergoes better phosphorylation by CK2 in the presence of arachidonic acid, a known activator of NADPH oxidase which induces conformational changes in p47(phox). In addition, 5,6-dichloro-1-beta-o-ribofuranosyl benzimidazole, a CK2 inhibitor, potentiates formyl-Met-Leu-Phe-induced NADPH oxidase activity in DMSO-differentiated HL-60 cells. Taken together, we propose that CK2 is the p47(phox) kinase, and that phosphorylation of p47(phox) by CK2 regulates the deactivation of NADPH oxidase.

Full Text

The Full Text of this article is available as a PDF (163.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. Protein phosphorylation and the respiratory burst. Arch Biochem Biophys. 1988 Aug 1;264(2):361–367. doi: 10.1016/0003-9861(88)90300-1. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M. The respiratory burst oxidase. Adv Enzymol Relat Areas Mol Biol. 1992;65:49–95. doi: 10.1002/9780470123119.ch2. [DOI] [PubMed] [Google Scholar]
  3. Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
  4. Clark R. A., Leidal K. G., Pearson D. W., Nauseef W. M. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem. 1987 Mar 25;262(9):4065–4074. [PubMed] [Google Scholar]
  5. Clark R. A., Volpp B. D., Leidal K. G., Nauseef W. M. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest. 1990 Mar;85(3):714–721. doi: 10.1172/JCI114496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeLeo F. R., Allen L. A., Apicella M., Nauseef W. M. NADPH oxidase activation and assembly during phagocytosis. J Immunol. 1999 Dec 15;163(12):6732–6740. [PubMed] [Google Scholar]
  7. Ding J., Badwey J. A. Neutrophils stimulated with a chemotactic peptide or a phorbol ester exhibit different alterations in the activities of a battery of protein kinases. J Biol Chem. 1993 Mar 5;268(7):5234–5240. [PubMed] [Google Scholar]
  8. Ding J., Vlahos C. J., Liu R., Brown R. F., Badwey J. A. Antagonists of phosphatidylinositol 3-kinase block activation of several novel protein kinases in neutrophils. J Biol Chem. 1995 May 12;270(19):11684–11691. doi: 10.1074/jbc.270.19.11684. [DOI] [PubMed] [Google Scholar]
  9. Doussière J., Pilloud M. C., Vignais P. V. Cytosolic factors in bovine neutrophil oxidase activation. Partial purification and demonstration of translocation to a membrane fraction. Biochemistry. 1990 Mar 6;29(9):2225–2232. doi: 10.1021/bi00461a004. [DOI] [PubMed] [Google Scholar]
  10. Dubois M. F., Nguyen V. T., Dahmus M. E., Pagès G., Pouysségur J., Bensaude O. Enhanced phosphorylation of the C-terminal domain of RNA polymerase II upon serum stimulation of quiescent cells: possible involvement of MAP kinases. EMBO J. 1994 Oct 17;13(20):4787–4797. doi: 10.1002/j.1460-2075.1994.tb06804.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eklund E. A., Gabig T. G. Purification and characterization of a lipid thiobis ester from human neutrophil cytosol that reversibly deactivates the O2- -generating NADPH oxidase. J Biol Chem. 1990 May 25;265(15):8426–8430. [PubMed] [Google Scholar]
  12. Faust L. R., el Benna J., Babior B. M., Chanock S. J. The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis. J Clin Invest. 1995 Sep;96(3):1499–1505. doi: 10.1172/JCI118187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gietz R. D., Graham K. C., Litchfield D. W. Interactions between the subunits of casein kinase II. J Biol Chem. 1995 Jun 2;270(22):13017–13021. doi: 10.1074/jbc.270.22.13017. [DOI] [PubMed] [Google Scholar]
  14. Grinstein S., Furuya W., Butler J. R., Tseng J. Receptor-mediated activation of multiple serine/threonine kinases in human leukocytes. J Biol Chem. 1993 Sep 25;268(27):20223–20231. [PubMed] [Google Scholar]
  15. Harris P., Ralph P. Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol. 1985 Apr;37(4):407–422. doi: 10.1002/jlb.37.4.407. [DOI] [PubMed] [Google Scholar]
  16. Hathaway G. M., Traugh J. A. Kinetics of activation of casein kinase II by polyamines and reversal of 2,3-bisphosphoglycerate inhibition. J Biol Chem. 1984 Jun 10;259(11):7011–7015. [PubMed] [Google Scholar]
  17. Hayakawa T., Suzuki K., Suzuki S., Andrews P. C., Babior B. M. A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease. J Biol Chem. 1986 Jul 15;261(20):9109–9115. [PubMed] [Google Scholar]
  18. Heyworth P. G., Curnutte J. T., Nauseef W. M., Volpp B. D., Pearson D. W., Rosen H., Clark R. A. Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest. 1991 Jan;87(1):352–356. doi: 10.1172/JCI114993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Issinger O. G. Casein kinases: pleiotropic mediators of cellular regulation. Pharmacol Ther. 1993;59(1):1–30. doi: 10.1016/0163-7258(93)90039-g. [DOI] [PubMed] [Google Scholar]
  20. Jakobi R., Traugh J. A. Characterization of the phosphotransferase domain of casein kinase II by site-directed mutagenesis and expression in Escherichia coli. J Biol Chem. 1992 Nov 25;267(33):23894–23902. [PubMed] [Google Scholar]
  21. Kim M. S., Lee Y. T., Kim J. M., Cha J. Y., Bae Y. S. Characterization of protein interaction among subunits of protein kinase CKII in vivo and in vitro. Mol Cells. 1998 Feb 28;8(1):43–48. [PubMed] [Google Scholar]
  22. Knaus U. G., Heyworth P. G., Evans T., Curnutte J. T., Bokoch G. M. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science. 1991 Dec 6;254(5037):1512–1515. doi: 10.1126/science.1660188. [DOI] [PubMed] [Google Scholar]
  23. Knaus U. G., Heyworth P. G., Kinsella B. T., Curnutte J. T., Bokoch G. M. Purification and characterization of Rac 2. A cytosolic GTP-binding protein that regulates human neutrophil NADPH oxidase. J Biol Chem. 1992 Nov 25;267(33):23575–23582. [PubMed] [Google Scholar]
  24. Knaus U. G., Morris S., Dong H. J., Chernoff J., Bokoch G. M. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors. Science. 1995 Jul 14;269(5221):221–223. doi: 10.1126/science.7618083. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Leusen J. H., Verhoeven A. J., Roos D. Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family. Front Biosci. 1996 Jul 1;1:d72–d90. doi: 10.2741/a117. [DOI] [PubMed] [Google Scholar]
  27. Lin W. J., Tuazon P. T., Traugh J. A. Characterization of the catalytic subunit of casein kinase II expressed in Escherichia coli and regulation of activity. J Biol Chem. 1991 Mar 25;266(9):5664–5669. [PubMed] [Google Scholar]
  28. Litchfield D. W., Lüscher B. Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem. 1993 Nov;127-128:187–199. doi: 10.1007/BF01076770. [DOI] [PubMed] [Google Scholar]
  29. Litchfield D. W., Slominski E., Lewenza S., Narvey M., Bosc D. G., Gietz R. D. Analysis of interactions between the subunits of protein kinase CK2. Biochem Cell Biol. 1996;74(4):541–547. doi: 10.1139/o96-458. [DOI] [PubMed] [Google Scholar]
  30. Marshak D. R., Carroll D. Synthetic peptide substrates for casein kinase II. Methods Enzymol. 1991;200:134–156. doi: 10.1016/0076-6879(91)00135-j. [DOI] [PubMed] [Google Scholar]
  31. Meggio F., Shugar D., Pinna L. A. Ribofuranosyl-benzimidazole derivatives as inhibitors of casein kinase-2 and casein kinase-1. Eur J Biochem. 1990 Jan 12;187(1):89–94. doi: 10.1111/j.1432-1033.1990.tb15280.x. [DOI] [PubMed] [Google Scholar]
  32. Nakanishi A., Imajoh-Ohmi S., Fujinawa T., Kikuchi H., Kanegasaki S. Direct evidence for interaction between COOH-terminal regions of cytochrome b558 subunits and cytosolic 47-kDa protein during activation of an O(2-)-generating system in neutrophils. J Biol Chem. 1992 Sep 25;267(27):19072–19074. [PubMed] [Google Scholar]
  33. Nauseef W. M., Volpp B. D., McCormick S., Leidal K. G., Clark R. A. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem. 1991 Mar 25;266(9):5911–5917. [PubMed] [Google Scholar]
  34. Park H. S., Park J. W. Conformational changes of the leukocyte NADPH oxidase subunit p47(phox) during activation studied through its intrinsic fluorescence. Biochim Biophys Acta. 1998 Sep 8;1387(1-2):406–414. doi: 10.1016/s0167-4838(98)00152-6. [DOI] [PubMed] [Google Scholar]
  35. Park J. W., Ahn S. M. Translocation of recombinant p47phox cytosolic component of the phagocyte oxidase by in vitro phosphorylation. Biochem Biophys Res Commun. 1995 Jun 15;211(2):410–416. doi: 10.1006/bbrc.1995.1829. [DOI] [PubMed] [Google Scholar]
  36. Park J. W., Benna J. E., Scott K. E., Christensen B. L., Chanock S. J., Babior B. M. Isolation of a complex of respiratory burst oxidase components from resting neutrophil cytosol. Biochemistry. 1994 Mar 15;33(10):2907–2911. doi: 10.1021/bi00176a021. [DOI] [PubMed] [Google Scholar]
  37. Park J. W., Hoyal C. R., Benna J. E., Babior B. M. Kinase-dependent activation of the leukocyte NADPH oxidase in a cell-free system. Phosphorylation of membranes and p47(PHOX) during oxidase activation. J Biol Chem. 1997 Apr 25;272(17):11035–11043. doi: 10.1074/jbc.272.17.11035. [DOI] [PubMed] [Google Scholar]
  38. Park J. W., Ma M., Ruedi J. M., Smith R. M., Babior B. M. The cytosolic components of the respiratory burst oxidase exist as a M(r) approximately 240,000 complex that acquires a membrane-binding site during activation of the oxidase in a cell-free system. J Biol Chem. 1992 Aug 25;267(24):17327–17332. [PubMed] [Google Scholar]
  39. Pearson R. B., Kemp B. E. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 1991;200:62–81. doi: 10.1016/0076-6879(91)00127-i. [DOI] [PubMed] [Google Scholar]
  40. Pinna L. A. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta. 1990 Sep 24;1054(3):267–284. doi: 10.1016/0167-4889(90)90098-x. [DOI] [PubMed] [Google Scholar]
  41. Quinn M. T., Evans T., Loetterle L. R., Jesaitis A. J., Bokoch G. M. Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components. J Biol Chem. 1993 Oct 5;268(28):20983–20987. [PubMed] [Google Scholar]
  42. Ridley A. J. Intracellular regulation. Rac and Bcr regulate phagocytic phoxes. Curr Biol. 1995 Jul 1;5(7):710–712. doi: 10.1016/s0960-9822(95)00140-0. [DOI] [PubMed] [Google Scholar]
  43. Rotrosen D., Leto T. L. Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events. J Biol Chem. 1990 Nov 15;265(32):19910–19915. [PubMed] [Google Scholar]
  44. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  45. Sumimoto H., Kage Y., Nunoi H., Sasaki H., Nose T., Fukumaki Y., Ohno M., Minakami S., Takeshige K. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5345–5349. doi: 10.1073/pnas.91.12.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Swain S. D., Helgerson S. L., Davis A. R., Nelson L. K., Quinn M. T. Analysis of activation-induced conformational changes in p47phox using tryptophan fluorescence spectroscopy. J Biol Chem. 1997 Nov 21;272(47):29502–29510. doi: 10.1074/jbc.272.47.29502. [DOI] [PubMed] [Google Scholar]
  47. Tamura M., Kanno M., Endo Y. Deactivation of neutrophil NADPH oxidase by actin-depolymerizing agents in a cell-free system. Biochem J. 2000 Jul 1;349(Pt 1):369–375. doi: 10.1042/0264-6021:3490369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Thompson H. L., Marshall C. J., Saklatvala J. Characterization of two different forms of mitogen-activated protein kinase kinase induced in polymorphonuclear leukocytes following stimulation by N-formylmethionyl-leucyl-phenylalanine or granulocyte-macrophage colony-stimulating factor. J Biol Chem. 1994 Apr 1;269(13):9486–9492. [PubMed] [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tyagi S. R., Neckelmann N., Uhlinger D. J., Burnham D. N., Lambeth J. D. Cell-free translocation of recombinant p47-phox, a component of the neutrophil NADPH oxidase: effects of guanosine 5'-O-(3-thiotriphosphate), diacylglycerol, and an anionic amphiphile. Biochemistry. 1992 Mar 17;31(10):2765–2774. doi: 10.1021/bi00125a017. [DOI] [PubMed] [Google Scholar]
  51. Tyagi S. R., Olson S. C., Burnham D. N., Lambeth J. D. Cyclic AMP-elevating agents block chemoattractant activation of diradylglycerol generation by inhibiting phospholipase D activation. J Biol Chem. 1991 Feb 25;266(6):3498–3504. [PubMed] [Google Scholar]
  52. Verhoeven A. J., Leusen J. H., Kessels G. C., Hilarius P. M., de Bont D. B., Liskamp R. M. Inhibition of neutrophil NADPH oxidase assembly by a myristoylated pseudosubstrate of protein kinase C. J Biol Chem. 1993 Sep 5;268(25):18593–18598. [PubMed] [Google Scholar]
  53. Yamaguchi M., Sasaki J., Kuwana M., Sakai M., Okamura N., Ishibashi S. Cytosolic protein phosphatase may turn off activated NADPH oxidase in guinea pig neutrophils. Arch Biochem Biophys. 1993 Oct;306(1):209–214. doi: 10.1006/abbi.1993.1502. [DOI] [PubMed] [Google Scholar]
  54. Yu H., Suchard S. J., Nairn R., Jove R. Dissociation of mitogen-activated protein kinase activation from the oxidative burst in differentiated HL-60 cells and human neutrophils. J Biol Chem. 1995 Jun 30;270(26):15719–15724. doi: 10.1074/jbc.270.26.15719. [DOI] [PubMed] [Google Scholar]
  55. Zandomeni R., Zandomeni M. C., Shugar D., Weinmann R. Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem. 1986 Mar 5;261(7):3414–3419. [PubMed] [Google Scholar]
  56. el Benna J., Faust L. P., Babior B. M. The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem. 1994 Sep 23;269(38):23431–23436. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES