Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 15;358(Pt 3):585–598. doi: 10.1042/bj3580585

Kinetic properties of the acylneuraminate cytidylyltransferase from Pasteurella haemolytica A2.

I G Bravo 1, S Barrallo 1, M A Ferrero 1, L B Rodríguez-Aparicio 1, H Martínez-Blanco 1, A Reglero 1
PMCID: PMC1222114  PMID: 11577688

Abstract

Neuroinvasive and septicaemia-causing pathogens often display a polysialic acid capsule that is involved in invasive behaviour. N-Acetylneuraminic acid (NeuAc) is the basic monomer of polysialic acid. The activated form, CMP-Neu5Ac, is synthesized by the acylneuraminate cytidylyltransferase (ACT; EC 2.7.7.43). We have purified this enzyme from Pasteurella haemolytica A2 to apparent homogeneity (522-fold). The protein behaved homogeneously on SDS/PAGE as a 43 kDa band, a size similar to that of Escherichia coli, calf, mouse and rat. Specific activity in crude lysate displayed one of the highest values cited in the literature (153 m-units/mg). We have studied the steady-state kinetic mechanism of the enzyme by using normalized plot premises. The catalysis proceeds through a Ping Pong Bi Bi mechanism, with CTP as the first substrate and CMP-NeuAc as the last product. The true Km values were 1.77 mM for CTP and 1.82 mM for NeuAc. The nucleotides CDP, UTP, UDP and TTP, and the modified sialic acid N-glycolylneuraminic acid were also substrates of the ACT activity. The enzyme is inhibited by cytidine nucleotides through binding to a second cytidyl-binding site. This inhibition is greater with nucleotides that display a long phosphate tail, and the genuine inhibitor is the substrate CTP. At physiological concentrations, ATP is an activator, and AMP an inhibitor, of the ACT activity. The activated sugar UDP-N-acetylglucosamine acts as an inhibitor, thus suggesting cross-regulation of the peptidoglycan and polysialic acid pathways. Our findings provide new mechanistic insights into the nature of sialic acid activation and suggest new targets for the approach to the pathogenesis of encapsulated bacteria.

Full Text

The Full Text of this article is available as a PDF (212.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrose M. G., Freese S. J., Reinhold M. S., Warner T. G., Vann W. F. 13C NMR investigation of the anomeric specificity of CMP-N-acetylneuraminic acid synthetase from Escherichia coli. Biochemistry. 1992 Jan 28;31(3):775–780. doi: 10.1021/bi00118a019. [DOI] [PubMed] [Google Scholar]
  2. BARRY G. T. Detection of sialic acid in various Escherichia coli strains and in other species of bacteria. Nature. 1959 Jan 10;183(4654):117–118. doi: 10.1038/183117a0. [DOI] [PubMed] [Google Scholar]
  3. BIBERSTEIN E. L., GILLS M., KNIGHT H. Serological types of Pasteurella hemolytica. Cornell Vet. 1960 Jul;50:283–300. [PubMed] [Google Scholar]
  4. Barrallo S., Reglero A., Revilla-Nuin B., Martínez-Blanco H., Rodríguez-Aparicio L. B., Ferrero M. A. Regulation of capsular polysialic acid biosynthesis by temperature in Pasteurella haemolytica A2. FEBS Lett. 1999 Feb 26;445(2-3):325–328. doi: 10.1016/s0014-5793(99)00163-5. [DOI] [PubMed] [Google Scholar]
  5. Biberstein E. L., Francis C. K. Nucleic acid homologies between the A and T types of Pasteurella haemolytica. J Med Microbiol. 1968 Aug;1(1):105–108. doi: 10.1099/00222615-1-1-105. [DOI] [PubMed] [Google Scholar]
  6. Bork P., Holm L., Koonin E. V., Sander C. The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Proteins. 1995 Jul;22(3):259–266. doi: 10.1002/prot.340220306. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Bravo I. G., Busto F., De Arriaga D., Ferrero M. A., Rodríguez-Aparicio L. B., Martínez-Blanco H., Reglero A. A normalized plot as a novel and time-saving tool in complex enzyme kinetic analysis. Biochem J. 2001 Sep 15;358(Pt 3):573–583. doi: 10.1042/bj3580573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. COMB D. G., ROSEMAN S. The sialic acids. I. The structure and enzymatic synthesis of N-acetylneuraminic acid. J Biol Chem. 1960 Sep;235:2529–2537. [PubMed] [Google Scholar]
  10. Ferrero M. A., Reglero A., Fernandez-Lopez M., Ordas R., Rodriguez-Aparicio L. B. N-acetyl-D-neuraminic acid lyase generates the sialic acid for colominic acid biosynthesis in Escherichia coli K1. Biochem J. 1996 Jul 1;317(Pt 1):157–165. doi: 10.1042/bj3170157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GHOSH S., ROSEMAN S. THE SIALIC ACIDS. IV. N-ACYL--D-GLUCOSAMINE 6-PHOSPHATE 2-EPIMERASE. J Biol Chem. 1965 Apr;240:1525–1530. [PubMed] [Google Scholar]
  12. Ganguli S., Zapata G., Wallis T., Reid C., Boulnois G., Vann W. F., Roberts I. S. Molecular cloning and analysis of genes for sialic acid synthesis in Neisseria meningitidis group B and purification of the meningococcal CMP-NeuNAc synthetase enzyme. J Bacteriol. 1994 Aug;176(15):4583–4589. doi: 10.1128/jb.176.15.4583-4589.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghalambor M. A., Heath E. C. The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. IV. Purification and properties of cytidine monophosphate 3-deoxy-d-manno-octulosonate synthetase. J Biol Chem. 1966 Jul 10;241(13):3216–3221. [PubMed] [Google Scholar]
  14. Goldman R. C., Kohlbrenner W. E. Molecular cloning of the structural gene coding for CTP:CMP-3-deoxy-manno-octulosonate cytidylyltransferase from Escherichia coli K-12. J Bacteriol. 1985 Jul;163(1):256–261. doi: 10.1128/jb.163.1.256-261.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haft R. F., Wessels M. R. Characterization of CMP-N-acetylneuraminic acid synthetase of group B streptococci. J Bacteriol. 1994 Dec;176(23):7372–7374. doi: 10.1128/jb.176.23.7372-7374.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haft R. F., Wessels M. R., Mebane M. F., Conaty N., Rubens C. E. Characterization of cpsF and its product CMP-N-acetylneuraminic acid synthetase, a group B streptococcal enzyme that can function in K1 capsular polysaccharide biosynthesis in Escherichia coli. Mol Microbiol. 1996 Feb;19(3):555–563. doi: 10.1046/j.1365-2958.1996.395931.x. [DOI] [PubMed] [Google Scholar]
  17. Karl D. M. Cellular nucleotide measurements and applications in microbial ecology. Microbiol Rev. 1980 Dec;44(4):739–796. doi: 10.1128/mr.44.4.739-796.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kean E. L., Roseman S. The sialic acids. X. Purification and properties of cytidine 5'-monophosphosialic acid synthetase. J Biol Chem. 1966 Dec 10;241(23):5643–5650. [PubMed] [Google Scholar]
  19. Kean E. L. Sialic acid activation. Glycobiology. 1991 Nov;1(5):441–447. doi: 10.1093/glycob/1.5.441. [DOI] [PubMed] [Google Scholar]
  20. Mannervik B. Regression analysis, experimental error, and statistical criteria in the design and analysis of experiments for discrimination between rival kinetic models. Methods Enzymol. 1982;87:370–390. doi: 10.1016/s0076-6879(82)87023-7. [DOI] [PubMed] [Google Scholar]
  21. Masson L., Holbein B. E. Physiology of sialic acid capsular polysaccharide synthesis in serogroup B Neisseria meningitidis. J Bacteriol. 1983 May;154(2):728–736. doi: 10.1128/jb.154.2.728-736.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mosimann S. C., Gilbert M., Dombroswki D., To R., Wakarchuk W., Strynadka N. C. Structure of a sialic acid-activating synthetase, CMP-acylneuraminate synthetase in the presence and absence of CDP. J Biol Chem. 2000 Dec 11;276(11):8190–8196. doi: 10.1074/jbc.M007235200. [DOI] [PubMed] [Google Scholar]
  23. Münster A. K., Eckhardt M., Potvin B., Mühlenhoff M., Stanley P., Gerardy-Schahn R. Mammalian cytidine 5'-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9140–9145. doi: 10.1073/pnas.95.16.9140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Brien W. E. A continuous spectrophotometric assay for argininosuccinate synthetase based on pyrophosphate formation. Anal Biochem. 1976 Dec;76(2):423–430. doi: 10.1016/0003-2697(76)90337-7. [DOI] [PubMed] [Google Scholar]
  25. Petrie C. R., 3rd, Korytnyk W. A high-performance liquid chromatography method for the assay of cytidine monophosphate-sialic acid synthetase. Anal Biochem. 1983 May;131(1):153–159. doi: 10.1016/0003-2697(83)90147-1. [DOI] [PubMed] [Google Scholar]
  26. Plumbridge J., Vimr E. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol. 1999 Jan;181(1):47–54. doi: 10.1128/jb.181.1.47-54.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Potvin B., Raju T. S., Stanley P. Lec32 is a new mutation in Chinese hamster ovary cells that essentially abrogates CMP-N-acetylneuraminic acid synthetase activity. J Biol Chem. 1995 Dec 22;270(51):30415–30421. doi: 10.1074/jbc.270.51.30415. [DOI] [PubMed] [Google Scholar]
  28. Puente-Polledo L., Reglero A., González-Clemente C., Rodríguez-Aparicio L. B., Ferrero M. A. Biochemical conditions for the production of polysialic acid by Pasteurella haemolytica A2. Glycoconj J. 1998 Sep;15(9):855–861. doi: 10.1023/a:1006902931032. [DOI] [PubMed] [Google Scholar]
  29. Rodríguez-Aparicio L. B., Ferrero M. A., Reglero A. N-acetyl-D-neuraminic acid synthesis in Escherichia coli K1 occurs through condensation of N-acetyl-D-mannosamine and pyruvate. Biochem J. 1995 Jun 1;308(Pt 2):501–505. doi: 10.1042/bj3080501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rodríguez-Aparicio L. B., Ferrero M. A., Revilla-Nuin B., Martínez-Blanco H., Reglero A. Determination of different amino sugar 2'-epimerase activities by coupling to N-acetylneuraminate synthesis. Biochim Biophys Acta. 1999 Aug 5;1428(2-3):305–313. doi: 10.1016/s0304-4165(99)00082-3. [DOI] [PubMed] [Google Scholar]
  31. Rodríguez-Aparicio L. B., Luengo J. M., González-Clemente C., Reglero A. Purification and characterization of the nuclear cytidine 5'-monophosphate N-acetylneuraminic acid synthetase from rat liver. J Biol Chem. 1992 May 5;267(13):9257–9263. [PubMed] [Google Scholar]
  32. Samuels N. M., Gibson B. W., Miller S. M. Investigation of the kinetic mechanism of cytidine 5'-monophosphate N-acetylneuraminic acid synthetase from Haemophilus ducreyi with new insights on rate-limiting steps from product inhibition analysis. Biochemistry. 1999 May 11;38(19):6195–6203. doi: 10.1021/bi990282j. [DOI] [PubMed] [Google Scholar]
  33. Schauer R. Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem. 1982;40:131–234. doi: 10.1016/s0065-2318(08)60109-2. [DOI] [PubMed] [Google Scholar]
  34. Shames S. L., Simon E. S., Christopher C. W., Schmid W., Whitesides G. M., Yang L. L. CMP-N-acetylneuraminic acid synthetase of Escherichia coli: high level expression, purification and use in the enzymatic synthesis of CMP-N-acetylneuraminic acid and CMP-neuraminic acid derivatives. Glycobiology. 1991 Mar;1(2):187–191. doi: 10.1093/glycob/1.2.187. [DOI] [PubMed] [Google Scholar]
  35. Stoughton D. M., Zapata G., Picone R., Vann W. F. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase. Biochem J. 1999 Oct 15;343(Pt 2):397–402. [PMC free article] [PubMed] [Google Scholar]
  36. Straus D. C., Jolley W. L., Purdy C. W. Characterization of neuraminidases produced by various serotypes of Pasteurella haemolytica. Infect Immun. 1993 Nov;61(11):4669–4674. doi: 10.1128/iai.61.11.4669-4674.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Swartley J. S., Stephens D. S. Identification of a genetic locus involved in the biosynthesis of N-acetyl-D-mannosamine, a precursor of the (alpha 2-->8)-linked polysialic acid capsule of serogroup B Neisseria meningitidis. J Bacteriol. 1994 Mar;176(5):1530–1534. doi: 10.1128/jb.176.5.1530-1534.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tullius M. V., Vann W. F., Gibson B. W. Covalent modification of Lys19 in the CTP binding site of cytidine 5'-monophosphate N-acetylneuraminic acid synthetase. Protein Sci. 1999 Mar;8(3):666–675. doi: 10.1110/ps.8.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vann W. F., Silver R. P., Abeijon C., Chang K., Aaronson W., Sutton A., Finn C. W., Lindner W., Kotsatos M. Purification, properties, and genetic location of Escherichia coli cytidine 5'-monophosphate N-acetylneuraminic acid synthetase. J Biol Chem. 1987 Dec 25;262(36):17556–17562. [PubMed] [Google Scholar]
  40. Vann W. F., Tavarez J. J., Crowley J., Vimr E., Silver R. P. Purification and characterization of the Escherichia coli K1 neuB gene product N-acetylneuraminic acid synthetase. Glycobiology. 1997 Jul;7(5):697–701. doi: 10.1093/glycob/7.5.697. [DOI] [PubMed] [Google Scholar]
  41. Vimr E., Steenbergen S., Cieslewicz M. Biosynthesis of the polysialic acid capsule in Escherichia coli K1. J Ind Microbiol. 1995 Oct;15(4):352–360. doi: 10.1007/BF01569991. [DOI] [PubMed] [Google Scholar]
  42. Vionnet J., Concepcion N., Warner T., Zapata G., Hanover J., Vann W. F. Purification of CMP-N-acetylneuraminic acid synthetase from bovine anterior pituitary glands. Glycobiology. 1999 May;9(5):481–487. doi: 10.1093/glycob/9.5.481. [DOI] [PubMed] [Google Scholar]
  43. WARREN L., BLACKLOW R. S. The biosynthesis of cytidine 5'-monophospho-n-acetylneuraminic acid by an enzyme from Neisseria meningitidis. J Biol Chem. 1962 Nov;237:3527–3534. [PubMed] [Google Scholar]
  44. Zapata G., Vann W. F., Aaronson W., Lewis M. S., Moos M. Sequence of the cloned Escherichia coli K1 CMP-N-acetylneuraminic acid synthetase gene. J Biol Chem. 1989 Sep 5;264(25):14769–14774. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES