Abstract
Two novel antimicrobial peptides have been identified and characterized from venom of the African scorpion Pandinus imperator. The peptides, designated pandinin 1 and 2, are alpha-helical polycationic peptides, with pandinin 1 belonging to the group of antibacterial peptides previously described from scorpions, frogs and insects, and pandinin 2 to the group of short magainin-type helical peptides from frogs. Both peptides demonstrated high antimicrobial activity against a range of Gram-positive bacteria (2.4-5.2 microM), but were less active against Gram-negative bacteria (2.4-38.2 microM), and only pandinin 2 affected the yeast Candida albicans. Pandinin 2 also demonstrated strong haemolytic activity (11.1-44.5 microM) against sheep erythrocytes, in contrast with pandinin 1, which was not haemolytic. CD studies and a high-resolution structure of pandinin 2 determined by NMR, showed that the two peptides are both essentially helical, but differ in their overall structure. Pandinin 2 is composed of a single alpha-helix with a predominantly hydrophobic N-terminal sequence, whereas pandinin 1 consists of two distinct alpha-helices separated by a coil region of higher flexibility. This is the first report of magainin-type polycationic antimicrobial peptides in scorpion venom. Their presence brings new insights into the mode of action of scorpion venom and also opens new avenues for the discovery of novel antibiotic molecules from arthropod venoms.
Full Text
The Full Text of this article is available as a PDF (307.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batista C. V., da Silva L. R., Sebben A., Scaloni A., Ferrara L., Paiva G. R., Olamendi-Portugal T., Possani L. D., Bloch C., Jr Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta. Peptides. 1999;20(6):679–686. doi: 10.1016/s0196-9781(99)00050-9. [DOI] [PubMed] [Google Scholar]
- Bazzo R., Tappin M. J., Pastore A., Harvey T. S., Carver J. A., Campbell I. D. The structure of melittin. A 1H-NMR study in methanol. Eur J Biochem. 1988 Apr 5;173(1):139–146. doi: 10.1111/j.1432-1033.1988.tb13977.x. [DOI] [PubMed] [Google Scholar]
- Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157–183. doi: 10.1016/s0005-2736(99)00205-9. [DOI] [PubMed] [Google Scholar]
- Bechinger B. Towards membrane protein design: pH-sensitive topology of histidine-containing polypeptides. J Mol Biol. 1996 Nov 15;263(5):768–775. doi: 10.1006/jmbi.1996.0614. [DOI] [PubMed] [Google Scholar]
- Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329–344. doi: 10.1016/s0145-305x(99)00015-4. [DOI] [PubMed] [Google Scholar]
- Böhm G., Muhr R., Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992 Apr;5(3):191–195. doi: 10.1093/protein/5.3.191. [DOI] [PubMed] [Google Scholar]
- Cociancich S., Goyffon M., Bontems F., Bulet P., Bouet F., Menez A., Hoffmann J. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem Biophys Res Commun. 1993 Jul 15;194(1):17–22. doi: 10.1006/bbrc.1993.1778. [DOI] [PubMed] [Google Scholar]
- Conde R., Zamudio F. Z., Rodríguez M. H., Possani L. D. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett. 2000 Apr 14;471(2-3):165–168. doi: 10.1016/s0014-5793(00)01384-3. [DOI] [PubMed] [Google Scholar]
- Csordás A., Michl H. Primary structure of two oligopeptides of the toxin of Bombina variegata L. Toxicon. 1969 Sep;7(2):103–108. doi: 10.1016/0041-0101(69)90072-5. [DOI] [PubMed] [Google Scholar]
- Daly J. W., Caceres J., Moni R. W., Gusovsky F., Moos M., Jr, Seamon K. B., Milton K., Myers C. W. Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10960–10963. doi: 10.1073/pnas.89.22.10960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dathe M., Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):71–87. doi: 10.1016/s0005-2736(99)00201-1. [DOI] [PubMed] [Google Scholar]
- Dempsey C. E., Bazzo R., Harvey T. S., Syperek I., Boheim G., Campbell I. D. Contribution of proline-14 to the structure and actions of melittin. FEBS Lett. 1991 Apr 9;281(1-2):240–244. doi: 10.1016/0014-5793(91)80402-o. [DOI] [PubMed] [Google Scholar]
- Ehret-Sabatier L., Loew D., Goyffon M., Fehlbaum P., Hoffmann J. A., van Dorsselaer A., Bulet P. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem. 1996 Nov 22;271(47):29537–29544. doi: 10.1074/jbc.271.47.29537. [DOI] [PubMed] [Google Scholar]
- Fennell J. F., Shipman W. H., Cole L. J. Antibacterial action of melittin, a polypeptide from bee venom. Proc Soc Exp Biol Med. 1968 Mar;127(3):707–710. doi: 10.3181/00379727-127-32779. [DOI] [PubMed] [Google Scholar]
- Gesell J., Zasloff M., Opella S. J. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR. 1997 Feb;9(2):127–135. doi: 10.1023/a:1018698002314. [DOI] [PubMed] [Google Scholar]
- Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
- Habermann E., Jentsch J. Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken. Hoppe Seylers Z Physiol Chem. 1967 Jan;348(1):37–50. [PubMed] [Google Scholar]
- Haeberli S., Kuhn-Nentwig L., Schaller J., Nentwig W. Characterisation of antibacterial activity of peptides isolated from the venom of the spider Cupiennius salei (Araneae: Ctenidae). Toxicon. 2000 Mar;38(3):373–380. doi: 10.1016/s0041-0101(99)00167-1. [DOI] [PubMed] [Google Scholar]
- Hancock R. E., Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998 Feb;16(2):82–88. doi: 10.1016/s0167-7799(97)01156-6. [DOI] [PubMed] [Google Scholar]
- Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
- Holak T. A., Engström A., Kraulis P. J., Lindeberg G., Bennich H., Jones T. A., Gronenborn A. M., Clore G. M. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry. 1988 Oct 4;27(20):7620–7629. doi: 10.1021/bi00420a008. [DOI] [PubMed] [Google Scholar]
- Hwang P. M., Vogel H. J. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol. 1998;76(2-3):235–246. doi: 10.1139/bcb-76-2-3-235. [DOI] [PubMed] [Google Scholar]
- Iwai H., Nakajima Y., Natori S., Arata Y., Shimada I. Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. Eur J Biochem. 1993 Oct 15;217(2):639–644. doi: 10.1111/j.1432-1033.1993.tb18287.x. [DOI] [PubMed] [Google Scholar]
- Iwanaga S., Kawabata S., Muta T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem. 1998 Jan;123(1):1–15. doi: 10.1093/oxfordjournals.jbchem.a021894. [DOI] [PubMed] [Google Scholar]
- Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
- Lee K. H., Hong S. Y., Oh J. E., Lee B. J., Choi B. S. Antimicrobial activity and conformation of gaegurin-6 amide and its analogs. Peptides. 1998;19(10):1653–1658. doi: 10.1016/s0196-9781(98)00119-3. [DOI] [PubMed] [Google Scholar]
- Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
- Morikawa N., Hagiwara K., Nakajima T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun. 1992 Nov 30;189(1):184–190. doi: 10.1016/0006-291x(92)91542-x. [DOI] [PubMed] [Google Scholar]
- Nicolas P., Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol. 1995;49:277–304. doi: 10.1146/annurev.mi.49.100195.001425. [DOI] [PubMed] [Google Scholar]
- Okada M., Natori S. Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem. 1985 Jun 25;260(12):7174–7177. [PubMed] [Google Scholar]
- Pallaghy P. K., Alewood D., Alewood P. F., Norton R. S. Solution structure of robustoxin, the lethal neurotoxin from the funnel-web spider Atrax robustus. FEBS Lett. 1997 Dec 15;419(2-3):191–196. doi: 10.1016/s0014-5793(97)01452-x. [DOI] [PubMed] [Google Scholar]
- Park J. M., Jung J. E., Lee B. J. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun. 1994 Nov 30;205(1):948–954. doi: 10.1006/bbrc.1994.2757. [DOI] [PubMed] [Google Scholar]
- Shai Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci. 1995 Nov;20(11):460–464. doi: 10.1016/s0968-0004(00)89101-x. [DOI] [PubMed] [Google Scholar]
- Sharon M., Oren Z., Shai Y., Anglister J. 2D-NMR and ATR-FTIR study of the structure of a cell-selective diastereomer of melittin and its orientation in phospholipids. Biochemistry. 1999 Nov 16;38(46):15305–15316. doi: 10.1021/bi991225t. [DOI] [PubMed] [Google Scholar]
- Silva P. I., Jr, Daffre S., Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem. 2000 Oct 27;275(43):33464–33470. doi: 10.1074/jbc.M001491200. [DOI] [PubMed] [Google Scholar]
- Simmaco M., Mignogna G., Barra D., Bossa F. Novel antimicrobial peptides from skin secretion of the European frog Rana esculenta. FEBS Lett. 1993 Jun 14;324(2):159–161. doi: 10.1016/0014-5793(93)81384-c. [DOI] [PubMed] [Google Scholar]
- Simmaco M., Mignogna G., Canofeni S., Miele R., Mangoni M. L., Barra D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem. 1996 Dec 15;242(3):788–792. doi: 10.1111/j.1432-1033.1996.0788r.x. [DOI] [PubMed] [Google Scholar]
- Sitaram N., Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):29–54. doi: 10.1016/s0005-2736(99)00199-6. [DOI] [PubMed] [Google Scholar]
- Srisailam S., Arunkumar A. I., Wang W., Yu C., Chen H. M. Conformational study of a custom antibacterial peptide cecropin B1: implications of the lytic activity. Biochim Biophys Acta. 2000 Jun 15;1479(1-2):275–285. doi: 10.1016/s0167-4838(00)00008-x. [DOI] [PubMed] [Google Scholar]
- Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248. doi: 10.1038/292246a0. [DOI] [PubMed] [Google Scholar]
- Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
- Torres-Larios A., Gurrola G. B., Zamudio F. Z., Possani L. D. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem. 2000 Aug;267(16):5023–5031. doi: 10.1046/j.1432-1327.2000.01556.x. [DOI] [PubMed] [Google Scholar]
- Vogt T. C., Bechinger B. The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers. The effects of charges and pH. J Biol Chem. 1999 Oct 8;274(41):29115–29121. doi: 10.1074/jbc.274.41.29115. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
- Wong H., Bowie J. H., Carver J. A. The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida. Eur J Biochem. 1997 Jul 15;247(2):545–557. doi: 10.1111/j.1432-1033.1997.00545.x. [DOI] [PubMed] [Google Scholar]
- Yan L., Adams M. E. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J Biol Chem. 1998 Jan 23;273(4):2059–2066. doi: 10.1074/jbc.273.4.2059. [DOI] [PubMed] [Google Scholar]
- Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
