Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):47–54. doi: 10.1042/0264-6021:3590047

Eicosanoids participate in the regulation of cardiac glucose transport by contribution to a rearrangement of actin cytoskeletal elements.

O Dransfeld 1, I Rakatzi 1, S Sasson 1, A Gruzman 1, M Schmitt 1, D Häussinger 1, J Eckel 1
PMCID: PMC1222120  PMID: 11563968

Abstract

Intact actin microfilaments are required for insulin-regulated glucose transporter isoform 4 (GLUT4) translocation to the plasma membrane. Lipoxygenase (LO) metabolites have recently been shown to contribute to the regulation of actin cytoskeleton rearrangement. In the present investigation, ventricular cardiomyocytes were used to study the effects of two structurally different LO inhibitors (esculetin and nordihydroguaiaretic acid) on insulin signalling events, glucose uptake, GLUT4 translocation and the actin network organization. Insulin stimulation increased glucose uptake 3-fold in control cells, whereas LO inhibition completely blocked this effect. This was paralleled by a slight reduction in the insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2. However, inhibition of 12-LO did not affect the association of phosphatidylinositol 3-kinase with IRS-1 and the phosphorylation of Akt/protein kinase B in response to insulin. Addition of 12(S)-hydroxyeicosatetraenoic acid almost completely restored the insulin action in cells exposed to nordihydroguaiaretic acid. Insulin stimulation increased cell surface GLUT4 2-fold in control cells, whereas LO inhibition abrogated the insulin-stimulated GLUT4 translocation. LO inhibition induced a prominent disassembly of actin fibres compared with control cells. In conclusion, we show here that 12(S)-hydroxyeicosatetraenoic acid plays a role in the organization of the actin network in cardiomyocytes. LO inhibition blocks GLUT4 translocation without affecting downstream insulin signalling. These data suggest that LO metabolites participate in the regulation of glucose transport by contributing to a rearrangement of actin cytoskeletal elements.

Full Text

The Full Text of this article is available as a PDF (222.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brash A. R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999 Aug 20;274(34):23679–23682. doi: 10.1074/jbc.274.34.23679. [DOI] [PubMed] [Google Scholar]
  2. Breitbart E., Sofer Y., Shainberg A., Grossman S. Lipoxygenase activity in heart cells. FEBS Lett. 1996 Oct 21;395(2-3):148–152. doi: 10.1016/0014-5793(96)01017-4. [DOI] [PubMed] [Google Scholar]
  3. Bähr M., Spelleken M., Bock M., von Holtey M., Kiehn R., Eckel J. Acute and chronic effects of troglitazone (CS-045) on isolated rat ventricular cardiomyocytes. Diabetologia. 1996 Jul;39(7):766–774. doi: 10.1007/s001250050509. [DOI] [PubMed] [Google Scholar]
  4. Bähr M., von Holtey M., Müller G., Eckel J. Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLUT1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology. 1995 Jun;136(6):2547–2553. doi: 10.1210/endo.136.6.7750476. [DOI] [PubMed] [Google Scholar]
  5. Chen W., Glasgow W., Murphy E., Steenbergen C. Lipoxygenase metabolism of arachidonic acid in ischemic preconditioning and PKC-induced protection in heart. Am J Physiol. 1999 Jun;276(6 Pt 2):H2094–H2101. doi: 10.1152/ajpheart.1999.276.6.H2094. [DOI] [PubMed] [Google Scholar]
  6. Dransfeld O., Uphues I., Sasson S., Schürmann A., Joost H. G., Eckel J. Regulation of subcellular distribution of GLUT4 in cardiomyocytes: Rab4A reduces basal glucose transport and augments insulin responsiveness. Exp Clin Endocrinol Diabetes. 2000;108(1):26–36. doi: 10.1055/s-0032-1329212. [DOI] [PubMed] [Google Scholar]
  7. Eckel J., Asskamp B., Reinauer H. Induction of insulin resistance in primary cultured adult cardiac myocytes. Endocrinology. 1991 Jul;129(1):345–352. doi: 10.1210/endo-129-1-345. [DOI] [PubMed] [Google Scholar]
  8. Eckel J., Till M., Uphues I. Cardiac insulin resistance is associated with an impaired recruitment of phosphatidylinositol 3-kinase to GLUT4 vesicles. Int J Obes Relat Metab Disord. 2000 Jun;24 (Suppl 2):S120–S121. doi: 10.1038/sj.ijo.0801295. [DOI] [PubMed] [Google Scholar]
  9. Freire-Moar J., Alavi-Nassab A., Ng M., Mulkins M., Sigal E. Cloning and characterization of a murine macrophage lipoxygenase. Biochim Biophys Acta. 1995 Jan 3;1254(1):112–116. doi: 10.1016/0005-2760(94)00199-9. [DOI] [PubMed] [Google Scholar]
  10. Funk C. D. The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim Biophys Acta. 1996 Nov 11;1304(1):65–84. doi: 10.1016/s0005-2760(96)00107-5. [DOI] [PubMed] [Google Scholar]
  11. Gowri M. S., Reaven G. M., Azhar S. Effect of masoprocol on glucose transport and lipolysis by isolated rat adipocytes. Metabolism. 1999 Apr;48(4):411–414. doi: 10.1016/s0026-0495(99)90096-3. [DOI] [PubMed] [Google Scholar]
  12. Kandror K. V., Pilch P. F. Compartmentalization of protein traffic in insulin-sensitive cells. Am J Physiol. 1996 Jul;271(1 Pt 1):E1–14. doi: 10.1152/ajpendo.1996.271.1.E1. [DOI] [PubMed] [Google Scholar]
  13. Kang L. T., Phillips T. M., Vanderhoek J. Y. Novel membrane target proteins for lipoxygenase-derived mono(S)hydroxy fatty acids. Biochim Biophys Acta. 1999 Jun 10;1438(3):388–398. doi: 10.1016/s0167-4838(99)00100-4. [DOI] [PubMed] [Google Scholar]
  14. Kang L. T., Vanderhoek J. Y. Mono (S) hydroxy fatty acids: novel ligands for cytosolic actin. J Lipid Res. 1998 Jul;39(7):1476–1482. [PubMed] [Google Scholar]
  15. Khayat Z. A., Tong P., Yaworsky K., Bloch R. J., Klip A. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci. 2000 Jan;113(Pt 2):279–290. doi: 10.1242/jcs.113.2.279. [DOI] [PubMed] [Google Scholar]
  16. Kuhn H., Thiele B. J. The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett. 1999 Apr 16;449(1):7–11. doi: 10.1016/s0014-5793(99)00396-8. [DOI] [PubMed] [Google Scholar]
  17. Kuzuya T., Hoshida S., Kim Y., Oe H., Hori M., Kamada T., Tada M. Free radical generation coupled with arachidonate lipoxygenase reaction relates to reoxygenation induced myocardial cell injury. Cardiovasc Res. 1993 Jun;27(6):1056–1060. doi: 10.1093/cvr/27.6.1056. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Liu L. S., Tanaka H., Ishii S., Eckel J. The new antidiabetic drug MCC-555 acutely sensitizes insulin signaling in isolated cardiomyocytes. Endocrinology. 1998 Nov;139(11):4531–4539. doi: 10.1210/endo.139.11.6310. [DOI] [PubMed] [Google Scholar]
  20. Miller Y. I., Chang M. K., Funk C. D., Feramisco J. R., Witztum J. L. 12/15-lipoxygenase translocation enhances site-specific actin polymerization in macrophages phagocytosing apoptotic cells. J Biol Chem. 2001 Mar 6;276(22):19431–19439. doi: 10.1074/jbc.M011276200. [DOI] [PubMed] [Google Scholar]
  21. Murphy E., Glasgow W., Fralix T., Steenbergen C. Role of lipoxygenase metabolites in ischemic preconditioning. Circ Res. 1995 Mar;76(3):457–467. doi: 10.1161/01.res.76.3.457. [DOI] [PubMed] [Google Scholar]
  22. Nugent C., Prins J. B., Whitehead J. P., Wentworth J. M., Chatterjee V. K., O'Rahilly S. Arachidonic acid stimulates glucose uptake in 3T3-L1 adipocytes by increasing GLUT1 and GLUT4 levels at the plasma membrane. Evidence for involvement of lipoxygenase metabolites and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2000 Dec 21;276(12):9149–9157. doi: 10.1074/jbc.M009817200. [DOI] [PubMed] [Google Scholar]
  23. Omata W., Shibata H., Li L., Takata K., Kojima I. Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem J. 2000 Mar 1;346(Pt 2):321–328. [PMC free article] [PubMed] [Google Scholar]
  24. Powell W. S. Precolumn extraction and reversed-phase high-pressure liquid chromatography of prostaglandins and leukotrienes. Anal Biochem. 1987 Jul;164(1):117–131. doi: 10.1016/0003-2697(87)90375-7. [DOI] [PubMed] [Google Scholar]
  25. Ramrath S., Tritschler H. J., Eckel J. Stimulation of cardiac glucose transport by thioctic acid and insulin. Horm Metab Res. 1999 Dec;31(12):632–635. doi: 10.1055/s-2007-978811. [DOI] [PubMed] [Google Scholar]
  26. Rea S., James D. E. Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes. 1997 Nov;46(11):1667–1677. doi: 10.2337/diab.46.11.1667. [DOI] [PubMed] [Google Scholar]
  27. Rice R. L., Tang D. G., Haddad M., Honn K. V., Taylor J. D. 12(S)-hydroxyeicosatetraenoic acid increases the actin microfilament content in B16a melanoma cells: a protein kinase-dependent process. Int J Cancer. 1998 Jul 17;77(2):271–278. doi: 10.1002/(sici)1097-0215(19980717)77:2<271::aid-ijc17>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  28. Sasson S., Kaiser N., Dan-Goor M., Oron R., Koren S., Wertheimer E., Unluhizarci K., Cerasi E. Substrate autoregulation of glucose transport: hexose 6-phosphate mediates the cellular distribution of glucose transporters. Diabetologia. 1997 Jan;40(1):30–39. doi: 10.1007/s001250050639. [DOI] [PubMed] [Google Scholar]
  29. Starkopf J., Andreasen T. V., Bugge E., Ytrehus K. Lipid peroxidation, arachidonic acid and products of the lipoxygenase pathway in ischaemic preconditioning of rat heart. Cardiovasc Res. 1998 Jan;37(1):66–75. doi: 10.1016/s0008-6363(97)00240-x. [DOI] [PubMed] [Google Scholar]
  30. Tang D. G., Diglio C. A., Honn K. V. 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and alpha V beta 3 integrins. Prostaglandins. 1993 Mar;45(3):249–267. doi: 10.1016/0090-6980(93)90051-8. [DOI] [PubMed] [Google Scholar]
  31. Tang D. G., Diglio C. A., Honn K. V. Activation of microvascular endothelium by eicosanoid 12(S)-hydroxyeicosatetraenoic acid leads to enhanced tumor cell adhesion via up-regulation of surface expression of alpha v beta 3 integrin: a posttranscriptional, protein kinase C- and cytoskeleton-dependent process. Cancer Res. 1994 Feb 15;54(4):1119–1129. [PubMed] [Google Scholar]
  32. Till M., Kolter T., Eckel J. Molecular mechanisms of contraction-induced translocation of GLUT4 in isolated cardiomyocytes. Am J Cardiol. 1997 Aug 4;80(3A):85A–89A. doi: 10.1016/s0002-9149(97)00461-x. [DOI] [PubMed] [Google Scholar]
  33. Tsakiridis T., Tong P., Matthews B., Tsiani E., Bilan P. J., Klip A., Downey G. P. Role of the actin cytoskeleton in insulin action. Microsc Res Tech. 1999 Oct 15;47(2):79–92. doi: 10.1002/(SICI)1097-0029(19991015)47:2<79::AID-JEMT1>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  34. Tsakiridis T., Vranic M., Klip A. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem. 1994 Nov 25;269(47):29934–29942. [PubMed] [Google Scholar]
  35. Tsakiridis T., Wang Q., Taha C., Grinstein S., Downey G., Klip A. Involvement of the actin network in insulin signalling. Soc Gen Physiol Ser. 1997;52:257–271. [PubMed] [Google Scholar]
  36. Wang Q., Bilan P. J., Tsakiridis T., Hinek A., Klip A. Actin filaments participate in the relocalization of phosphatidylinositol3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3-L1 adipocytes. Biochem J. 1998 May 1;331(Pt 3):917–928. doi: 10.1042/bj3310917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamada M., Proia A. D. 8(S)-hydroxyeicosatetraenoic acid is the lipoxygenase metabolite of arachidonic acid that regulates epithelial cell migration in the rat cornea. Cornea. 2000 May;19(3 Suppl):S13–S20. doi: 10.1097/00003226-200005001-00004. [DOI] [PubMed] [Google Scholar]
  38. Yamamoto S., Suzuki H., Ueda N. Arachidonate 12-lipoxygenases. Prog Lipid Res. 1997 Mar;36(1):23–41. doi: 10.1016/s0163-7827(97)00002-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES