Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):55–64. doi: 10.1042/0264-6021:3590055

Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms.

W Suginta 1, N Karoulias 1, A Aitken 1, R H Ashley 1
PMCID: PMC1222121  PMID: 11563969

Abstract

Mammalian chloride intracellular channel (CLIC) (p64-related) proteins are widely expressed, with an unusual dual localization as both soluble and integral membrane proteins. The molecular basis for their cellular localization and ion channel activity remains unclear. To help in addressing these problems, we identified novel rat brain CLIC4 (p64H1) binding partners by affinity chromatography, mass spectrometric analysis and microsequencing. Brain CLIC4 binds dynamin I, alpha-tubulin, beta-actin, creatine kinase and two 14-3-3 isoforms; the interactions are confirmed in vivo by immunoprecipitation. Gel overlay and reverse pull-down assays indicate that the binding of CLIC4 to dynamin I and 14-3-3zeta is direct. In HEK-293 cells, biochemical and immunofluorescence analyses show partial co-localization of recombinant CLIC4 with caveolin and with functional caveolae, which is consistent with a dynamin-associated role for CLIC4 in caveolar endocytosis. We speculate that brain CLIC4 might be involved in the dynamics of neuronal plasma membrane microdomains (micropatches) containing caveolin-like proteins and might also have other cellular roles related to membrane trafficking. Our results provide the basis for new hypotheses concerning novel ways in which CLIC proteins might be associated with cell membrane remodelling, the control of cell shape, and anion channel activity.

Full Text

The Full Text of this article is available as a PDF (309.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken A. 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol. 1996 Sep;6(9):341–347. doi: 10.1016/0962-8924(96)10029-5. [DOI] [PubMed] [Google Scholar]
  2. Arispe N., Pollard H. B., Rojas E. Calcium-independent K(+)-selective channel from chromaffin granule membranes. J Membr Biol. 1992 Nov;130(2):191–202. doi: 10.1007/BF00231896. [DOI] [PubMed] [Google Scholar]
  3. Ashley R. H., Brown D. M., Apps D. K., Phillips J. H. Evidence for a K+ channel in bovine chromaffin granule membranes: single-channel properties and possible bioenergetic significance. Eur Biophys J. 1994;23(4):263–275. doi: 10.1007/BF00213576. [DOI] [PubMed] [Google Scholar]
  4. Ballarin C., Sorgato M. C. Anion channels of the inner membrane of mammalian and yeast mitochondria. J Bioenerg Biomembr. 1996 Apr;28(2):125–130. doi: 10.1007/BF02110642. [DOI] [PubMed] [Google Scholar]
  5. Berryman M., Bretscher A. Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Mol Biol Cell. 2000 May;11(5):1509–1521. doi: 10.1091/mbc.11.5.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chuang J. Z., Milner T. A., Zhu M., Sung C. H. A 29 kDa intracellular chloride channel p64H1 is associated with large dense-core vesicles in rat hippocampal neurons. J Neurosci. 1999 Apr 15;19(8):2919–2928. doi: 10.1523/JNEUROSCI.19-08-02919.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook T. A., Urrutia R., McNiven M. A. Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):644–648. doi: 10.1073/pnas.91.2.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duncan R. R., Westwood P. K., Boyd A., Ashley R. H. Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J Biol Chem. 1997 Sep 19;272(38):23880–23886. doi: 10.1074/jbc.272.38.23880. [DOI] [PubMed] [Google Scholar]
  9. Edwards J. C. A novel p64-related Cl- channel: subcellular distribution and nephron segment-specific expression. Am J Physiol. 1999 Mar;276(3 Pt 2):F398–F408. doi: 10.1152/ajprenal.1999.276.3.F398. [DOI] [PubMed] [Google Scholar]
  10. Edwards J. C., Tulk B., Schlesinger P. H. Functional expression of p64, an intracellular chloride channel protein. J Membr Biol. 1998 May 15;163(2):119–127. doi: 10.1007/s002329900376. [DOI] [PubMed] [Google Scholar]
  11. Fernández-Salas E., Sagar M., Cheng C., Yuspa S. H., Weinberg W. C. p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein. J Biol Chem. 1999 Dec 17;274(51):36488–36497. doi: 10.1074/jbc.274.51.36488. [DOI] [PubMed] [Google Scholar]
  12. Fish K. N., Schmid S. L., Damke H. Evidence that dynamin-2 functions as a signal-transducing GTPase. J Cell Biol. 2000 Jul 10;150(1):145–154. doi: 10.1083/jcb.150.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glickman J., Croen K., Kelly S., Al-Awqati Q. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J Cell Biol. 1983 Oct;97(4):1303–1308. doi: 10.1083/jcb.97.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heiss N. S., Poustka A. Genomic structure of a novel chloride channel gene, CLIC2, in Xq28. Genomics. 1997 Oct 1;45(1):224–228. doi: 10.1006/geno.1997.4922. [DOI] [PubMed] [Google Scholar]
  15. Henley J. R., Krueger E. W., Oswald B. J., McNiven M. A. Dynamin-mediated internalization of caveolae. J Cell Biol. 1998 Apr 6;141(1):85–99. doi: 10.1083/jcb.141.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Howell S., Duncan R. R., Ashley R. H. Identification and characterisation of a homologue of p64 in rat tissues. FEBS Lett. 1996 Jul 22;390(2):207–210. doi: 10.1016/0014-5793(96)00676-x. [DOI] [PubMed] [Google Scholar]
  17. Lamaze C., Fujimoto L. M., Yin H. L., Schmid S. L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J Biol Chem. 1997 Aug 15;272(33):20332–20335. doi: 10.1074/jbc.272.33.20332. [DOI] [PubMed] [Google Scholar]
  18. Landry D. W., Akabas M. H., Redhead C., Edelman A., Cragoe E. J., Jr, Al-Awqati Q. Purification and reconstitution of chloride channels from kidney and trachea. Science. 1989 Jun 23;244(4911):1469–1472. doi: 10.1126/science.2472007. [DOI] [PubMed] [Google Scholar]
  19. Landry D., Sullivan S., Nicolaides M., Redhead C., Edelman A., Field M., al-Awqati Q., Edwards J. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J Biol Chem. 1993 Jul 15;268(20):14948–14955. [PubMed] [Google Scholar]
  20. Lang D. M., Lommel S., Jung M., Ankerhold R., Petrausch B., Laessing U., Wiechers M. F., Plattner H., Stuermer C. A. Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol. 1998 Dec;37(4):502–523. doi: 10.1002/(sici)1097-4695(199812)37:4<502::aid-neu2>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  21. Lang T., Wacker I., Wunderlich I., Rohrbach A., Giese G., Soldati T., Almers W. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys J. 2000 Jun;78(6):2863–2877. doi: 10.1016/S0006-3495(00)76828-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martin H., Rostas J., Patel Y., Aitken A. Subcellular localisation of 14-3-3 isoforms in rat brain using specific antibodies. J Neurochem. 1994 Dec;63(6):2259–2265. doi: 10.1046/j.1471-4159.1994.63062259.x. [DOI] [PubMed] [Google Scholar]
  23. McNiven M. A., Cao H., Pitts K. R., Yoon Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem Sci. 2000 Mar;25(3):115–120. doi: 10.1016/s0968-0004(99)01538-8. [DOI] [PubMed] [Google Scholar]
  24. McNiven M. A., Kim L., Krueger E. W., Orth J. D., Cao H., Wong T. W. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol. 2000 Oct 2;151(1):187–198. doi: 10.1083/jcb.151.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Michikawa T., Miyawaki A., Furuichi T., Mikoshiba K. Inositol 1,4,5-trisphosphate receptors and calcium signaling. Crit Rev Neurobiol. 1996;10(1):39–55. doi: 10.1615/critrevneurobiol.v10.i1.20. [DOI] [PubMed] [Google Scholar]
  26. Nilius B., Eggermont J., Voets T., Droogmans G. Volume-activated Cl- channels. Gen Pharmacol. 1996 Oct;27(7):1131–1140. doi: 10.1016/s0306-3623(96)00061-4. [DOI] [PubMed] [Google Scholar]
  27. Nishizawa T., Nagao T., Iwatsubo T., Forte J. G., Urushidani T. Molecular cloning and characterization of a novel chloride intracellular channel-related protein, parchorin, expressed in water-secreting cells. J Biol Chem. 2000 Apr 14;275(15):11164–11173. doi: 10.1074/jbc.275.15.11164. [DOI] [PubMed] [Google Scholar]
  28. Nordeen M. H., Jones S. M., Howell K. E., Caldwell J. H. GOLAC: an endogenous anion channel of the Golgi complex. Biophys J. 2000 Jun;78(6):2918–2928. doi: 10.1016/S0006-3495(00)76832-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Obar R. A., Collins C. A., Hammarback J. A., Shpetner H. S., Vallee R. B. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature. 1990 Sep 20;347(6290):256–261. doi: 10.1038/347256a0. [DOI] [PubMed] [Google Scholar]
  30. Oh P., McIntosh D. P., Schnitzer J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol. 1998 Apr 6;141(1):101–114. doi: 10.1083/jcb.141.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Okada Y. Volume expansion-sensing outward-rectifier Cl- channel: fresh start to the molecular identity and volume sensor. Am J Physiol. 1997 Sep;273(3 Pt 1):C755–C789. doi: 10.1152/ajpcell.1997.273.3.C755. [DOI] [PubMed] [Google Scholar]
  32. Palestini P., Pitto M., Tedeschi G., Ferraretto A., Parenti M., Brunner J., Masserini M. Tubulin anchoring to glycolipid-enriched, detergent-resistant domains of the neuronal plasma membrane. J Biol Chem. 2000 Apr 7;275(14):9978–9985. doi: 10.1074/jbc.275.14.9978. [DOI] [PubMed] [Google Scholar]
  33. Parton R. G., Joggerst B., Simons K. Regulated internalization of caveolae. J Cell Biol. 1994 Dec;127(5):1199–1215. doi: 10.1083/jcb.127.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pike L. J., Casey L. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem. 1996 Oct 25;271(43):26453–26456. doi: 10.1074/jbc.271.43.26453. [DOI] [PubMed] [Google Scholar]
  35. Qian Z., Okuhara D., Abe M. K., Rosner M. R. Molecular cloning and characterization of a mitogen-activated protein kinase-associated intracellular chloride channel. J Biol Chem. 1999 Jan 15;274(3):1621–1627. doi: 10.1074/jbc.274.3.1621. [DOI] [PubMed] [Google Scholar]
  36. Redhead C. R., Edelman A. E., Brown D., Landry D. W., al-Awqati Q. A ubiquitous 64-kDa protein is a component of a chloride channel of plasma and intracellular membranes. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3716–3720. doi: 10.1073/pnas.89.9.3716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Redhead C., Sullivan S. K., Koseki C., Fujiwara K., Edwards J. C. Subcellular distribution and targeting of the intracellular chloride channel p64. Mol Biol Cell. 1997 Apr;8(4):691–704. doi: 10.1091/mbc.8.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schmid S. L., McNiven M. A., De Camilli P. Dynamin and its partners: a progress report. Curr Opin Cell Biol. 1998 Aug;10(4):504–512. doi: 10.1016/s0955-0674(98)80066-5. [DOI] [PubMed] [Google Scholar]
  39. Shoshan-Barmatz V., Ashley R. H. The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int Rev Cytol. 1998;183:185–270. doi: 10.1016/s0074-7696(08)60145-x. [DOI] [PubMed] [Google Scholar]
  40. Simon S. M., Blobel G. A protein-conducting channel in the endoplasmic reticulum. Cell. 1991 May 3;65(3):371–380. doi: 10.1016/0092-8674(91)90455-8. [DOI] [PubMed] [Google Scholar]
  41. Sotgia F., Lee J. K., Das K., Bedford M., Petrucci T. C., Macioce P., Sargiacomo M., Bricarelli F. D., Minetti C., Sudol M. Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem. 2000 Dec 1;275(48):38048–38058. doi: 10.1074/jbc.M005321200. [DOI] [PubMed] [Google Scholar]
  42. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  43. Stanley E. F., Ehrenstein G., Russell J. T. Evidence for anion channels in secretory vesicles. Neuroscience. 1988 Jun;25(3):1035–1039. doi: 10.1016/0306-4522(88)90056-5. [DOI] [PubMed] [Google Scholar]
  44. Strange K., Emma F., Jackson P. S. Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol. 1996 Mar;270(3 Pt 1):C711–C730. doi: 10.1152/ajpcell.1996.270.3.C711. [DOI] [PubMed] [Google Scholar]
  45. Tabares L., Mazzanti M., Clapham D. E. Chloride channels in the nuclear membrane. J Membr Biol. 1991 Jul;123(1):49–54. doi: 10.1007/BF01993962. [DOI] [PubMed] [Google Scholar]
  46. Tettamanti G., Riboni L. Gangliosides and modulation of the function of neural cells. Adv Lipid Res. 1993;25:235–267. [PubMed] [Google Scholar]
  47. Torre E., McNiven M. A., Urrutia R. Dynamin 1 antisense oligonucleotide treatment prevents neurite formation in cultured hippocampal neurons. J Biol Chem. 1994 Dec 23;269(51):32411–32417. [PubMed] [Google Scholar]
  48. Trouet D., Nilius B., Jacobs A., Remacle C., Droogmans G., Eggermont J. Caveolin-1 modulates the activity of the volume-regulated chloride channel. J Physiol. 1999 Oct 1;520(Pt 1):113–119. doi: 10.1111/j.1469-7793.1999.t01-1-00113.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tulk B. M., Schlesinger P. H., Kapadia S. A., Edwards J. C. CLIC-1 functions as a chloride channel when expressed and purified from bacteria. J Biol Chem. 2000 Sep 1;275(35):26986–26993. doi: 10.1074/jbc.M004301200. [DOI] [PubMed] [Google Scholar]
  50. Valenzuela S. M., Martin D. K., Por S. B., Robbins J. M., Warton K., Bootcov M. R., Schofield P. R., Campbell T. J., Breit S. N. Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem. 1997 May 9;272(19):12575–12582. doi: 10.1074/jbc.272.19.12575. [DOI] [PubMed] [Google Scholar]
  51. Witke W., Podtelejnikov A. V., Di Nardo A., Sutherland J. D., Gurniak C. B., Dotti C., Mann M. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 1998 Feb 16;17(4):967–976. doi: 10.1093/emboj/17.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. al-Awqati Q. Chloride channels of intracellular organelles. Curr Opin Cell Biol. 1995 Aug;7(4):504–508. doi: 10.1016/0955-0674(95)80006-9. [DOI] [PubMed] [Google Scholar]
  53. van der Bliek A. M. Functional diversity in the dynamin family. Trends Cell Biol. 1999 Mar;9(3):96–102. doi: 10.1016/s0962-8924(98)01490-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES