Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):77–87. doi: 10.1042/0264-6021:3590077

Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy.

N A Wahab 1, N Yevdokimova 1, B S Weston 1, T Roberts 1, X J Li 1, H Brinkman 1, R M Mason 1
PMCID: PMC1222123  PMID: 11563971

Abstract

We characterized a rabbit polyclonal antibody raised against human recombinant connective tissue growth factor (CTGF). The antibody recognised a higher molecular mass form (approx. 56 kDa) of CTGF in mesangial cell lysates as well as the monomeric (36-38 kDa) and lower molecular mass forms (<30 kDa) reported previously. Immunohistochemistry detected CTGF protein in glomeruli of kidneys of non-obese diabetic mice 14 days after the onset of diabetes, and this was prominent by 70 days. CTGF protein is also present in glomeruli of human patients with diabetic nephropathy. No CTGF was detected in either normal murine or human glomeruli. Transient transfection of a transformed human mesangial cell line with a CTGF-V5 epitope fusion protein markedly increased fibronectin and plasminogen activator inhibitor-1 synthesis in cultures maintained in normal glucose (4 mM) conditions; a CTGF-antisense construct reduced the elevated synthesis of these proteins in high glucose (30 mM) cultures. Culture of primary human mesangial cells for 14 days in high glucose, or in low glucose supplemented with recombinant CTGF or transforming growth factor beta1, markedly increased CTGF mRNA levels and fibronectin synthesis. However, whilst co-culture with a CTGF-antisense oligonucleotide reduced the CTGF mRNA pool by greater than 90% in high glucose, it only partially reduced fibronectin mRNA levels and synthesis. A chick anti-CTGF neutralizing antibody had a similar effect on fibronectin synthesis. Thus both CTGF and CTGF-independent pathways mediate increased fibronectin synthesis in high glucose. Nevertheless CTGF expression in diabetic kidneys is likely to be a key event in the development of glomerulosclerosis by affecting both matrix synthesis and, potentially through plasminogen activator inhibitor-1, its turnover.

Full Text

The Full Text of this article is available as a PDF (327.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel Wahab N., Mason R. M. Modulation of neutral protease expression in human mesangial cells by hyperglycaemic culture. Biochem J. 1996 Dec 15;320(Pt 3):777–783. doi: 10.1042/bj3200777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen J. T., Knight R. A., Bloor C. A., Spiteri M. A. Enhanced insulin-like growth factor binding protein-related protein 2 (Connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol. 1999 Dec;21(6):693–700. doi: 10.1165/ajrcmb.21.6.3719. [DOI] [PubMed] [Google Scholar]
  3. Brattain M. G., Markowitz S. D., Willson J. K. The type II transforming growth factor-beta receptor as a tumor-suppressor gene. Curr Opin Oncol. 1996 Jan;8(1):49–53. doi: 10.1097/00001622-199601000-00009. [DOI] [PubMed] [Google Scholar]
  4. Brunner A., Chinn J., Neubauer M., Purchio A. F. Identification of a gene family regulated by transforming growth factor-beta. DNA Cell Biol. 1991 May;10(4):293–300. doi: 10.1089/dna.1991.10.293. [DOI] [PubMed] [Google Scholar]
  5. Chambers R. C., Leoni P., Blanc-Brude O. P., Wembridge D. E., Laurent G. J. Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J Biol Chem. 2000 Nov 10;275(45):35584–35591. doi: 10.1074/jbc.M003188200. [DOI] [PubMed] [Google Scholar]
  6. Dammeier J., Beer H. D., Brauchle M., Werner S. Dexamethasone is a novel potent inducer of connective tissue growth factor expression. Implications for glucocorticoid therapy. J Biol Chem. 1998 Jul 17;273(29):18185–18190. doi: 10.1074/jbc.273.29.18185. [DOI] [PubMed] [Google Scholar]
  7. Dammeier J., Brauchle M., Falk W., Grotendorst G. R., Werner S. Connective tissue growth factor: a novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? Int J Biochem Cell Biol. 1998 Aug;30(8):909–922. doi: 10.1016/s1357-2725(98)00046-6. [DOI] [PubMed] [Google Scholar]
  8. Dennler S., Itoh S., Vivien D., ten Dijke P., Huet S., Gauthier J. M. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998 Jun 1;17(11):3091–3100. doi: 10.1093/emboj/17.11.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doi T., Hattori M., Agodoa L. Y., Sato T., Yoshida H., Striker L. J., Striker G. E. Glomerular lesions in nonobese diabetic mouse: before and after the onset of hyperglycemia. Lab Invest. 1990 Aug;63(2):204–212. [PubMed] [Google Scholar]
  10. Gilbert R. E., Cooper M. E. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 1999 Nov;56(5):1627–1637. doi: 10.1046/j.1523-1755.1999.00721.x. [DOI] [PubMed] [Google Scholar]
  11. Grotendorst G. R. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997 Sep;8(3):171–179. doi: 10.1016/s1359-6101(97)00010-5. [DOI] [PubMed] [Google Scholar]
  12. Grotendorst G. R., Okochi H., Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ. 1996 Apr;7(4):469–480. [PubMed] [Google Scholar]
  13. Gupta S., Clarkson M. R., Duggan J., Brady H. R. Connective tissue growth factor: potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int. 2000 Oct;58(4):1389–1399. doi: 10.1046/j.1523-1755.2000.00301.x. [DOI] [PubMed] [Google Scholar]
  14. Hahn A., Heusinger-Ribeiro J., Lanz T., Zenkel S., Goppelt-Struebe M. Induction of connective tissue growth factor by activation of heptahelical receptors. Modulation by Rho proteins and the actin cytoskeleton. J Biol Chem. 2000 Dec 1;275(48):37429–37435. doi: 10.1074/jbc.M000976200. [DOI] [PubMed] [Google Scholar]
  15. Hattori M., Yamato E., Itoh N., Senpuku H., Fujisawa T., Yoshino M., Fukuda M., Matsumoto E., Toyonaga T., Nakagawa I. Cutting edge: homologous recombination of the MHC class I K region defines new MHC-linked diabetogenic susceptibility gene(s) in nonobese diabetic mice. J Immunol. 1999 Aug 15;163(4):1721–1724. [PubMed] [Google Scholar]
  16. Hocevar B. A., Brown T. L., Howe P. H. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 1999 Mar 1;18(5):1345–1356. doi: 10.1093/emboj/18.5.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hua X., Liu X., Ansari D. O., Lodish H. F. Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev. 1998 Oct 1;12(19):3084–3095. doi: 10.1101/gad.12.19.3084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Igarashi A., Nashiro K., Kikuchi K., Sato S., Ihn H., Grotendorst G. R., Takehara K. Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol. 1995 Aug;105(2):280–284. doi: 10.1111/1523-1747.ep12318465. [DOI] [PubMed] [Google Scholar]
  19. Igarashi A., Okochi H., Bradham D. M., Grotendorst G. R. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell. 1993 Jun;4(6):637–645. doi: 10.1091/mbc.4.6.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ito Y., Aten J., Bende R. J., Oemar B. S., Rabelink T. J., Weening J. J., Goldschmeding R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 1998 Apr;53(4):853–861. doi: 10.1111/j.1523-1755.1998.00820.x. [DOI] [PubMed] [Google Scholar]
  21. Iwano M., Kubo A., Nishino T., Sato H., Nishioka H., Akai Y., Kurioka H., Fujii Y., Kanauchi M., Shiiki H. Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus. Kidney Int. 1996 Apr;49(4):1120–1126. doi: 10.1038/ki.1996.162. [DOI] [PubMed] [Google Scholar]
  22. Kothapalli D., Frazier K. S., Welply A., Segarini P. R., Grotendorst G. R. Transforming growth factor beta induces anchorage-independent growth of NRK fibroblasts via a connective tissue growth factor-dependent signaling pathway. Cell Growth Differ. 1997 Jan;8(1):61–68. [PubMed] [Google Scholar]
  23. Kreisberg J. I., Garoni J. A., Radnik R., Ayo S. H. High glucose and TGF beta 1 stimulate fibronectin gene expression through a cAMP response element. Kidney Int. 1994 Oct;46(4):1019–1024. doi: 10.1038/ki.1994.362. [DOI] [PubMed] [Google Scholar]
  24. Kreisberg J. I., Radnik R. A., Kreisberg S. H. Phosphorylation of cAMP responsive element binding protein after treatment of mesangial cells with high glucose plus TGF beta or PMA. Kidney Int. 1996 Sep;50(3):805–810. doi: 10.1038/ki.1996.379. [DOI] [PubMed] [Google Scholar]
  25. Kubota S., Hattori T., Nakanishi T., Takigawa M. Involvement of cis-acting repressive element(s) in the 3'-untranslated region of human connective tissue growth factor gene. FEBS Lett. 1999 Apr 30;450(1-2):84–88. doi: 10.1016/s0014-5793(99)00480-9. [DOI] [PubMed] [Google Scholar]
  26. Lau L. F., Lam S. C. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res. 1999 Apr 10;248(1):44–57. doi: 10.1006/excr.1999.4456. [DOI] [PubMed] [Google Scholar]
  27. Lund T., O'Reilly L., Hutchings P., Kanagawa O., Simpson E., Gravely R., Chandler P., Dyson J., Picard J. K., Edwards A. Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A beta-chain or normal I-E alpha-chain. Nature. 1990 Jun 21;345(6277):727–729. doi: 10.1038/345727a0. [DOI] [PubMed] [Google Scholar]
  28. Murphy-Ullrich J. E., Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev. 2000 Mar-Jun;11(1-2):59–69. doi: 10.1016/s1359-6101(99)00029-5. [DOI] [PubMed] [Google Scholar]
  29. Murphy M., Godson C., Cannon S., Kato S., Mackenzie H. S., Martin F., Brady H. R. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem. 1999 Feb 26;274(9):5830–5834. doi: 10.1074/jbc.274.9.5830. [DOI] [PubMed] [Google Scholar]
  30. Nakanishi T., Kimura Y., Tamura T., Ichikawa H., Yamaai Y., Sugimoto T., Takigawa M. Cloning of a mRNA preferentially expressed in chondrocytes by differential display-PCR from a human chondrocytic cell line that is identical with connective tissue growth factor (CTGF) mRNA. Biochem Biophys Res Commun. 1997 May 8;234(1):206–210. doi: 10.1006/bbrc.1997.6528. [DOI] [PubMed] [Google Scholar]
  31. Oh J. H., Ha H., Yu M. R., Lee H. B. Sequential effects of high glucose on mesangial cell transforming growth factor-beta 1 and fibronectin synthesis. Kidney Int. 1998 Dec;54(6):1872–1878. doi: 10.1046/j.1523-1755.1998.00193.x. [DOI] [PubMed] [Google Scholar]
  32. Paradis V., Dargere D., Vidaud M., De Gouville A. C., Huet S., Martinez V., Gauthier J. M., Ba N., Sobesky R., Ratziu V. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999 Oct;30(4):968–976. doi: 10.1002/hep.510300425. [DOI] [PubMed] [Google Scholar]
  33. Riser B. L., Denichilo M., Cortes P., Baker C., Grondin J. M., Yee J., Narins R. G. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol. 2000 Jan;11(1):25–38. doi: 10.1681/ASN.V11125. [DOI] [PubMed] [Google Scholar]
  34. Ryseck R. P., Macdonald-Bravo H., Mattéi M. G., Bravo R. Structure, mapping, and expression of fisp-12, a growth factor-inducible gene encoding a secreted cysteine-rich protein. Cell Growth Differ. 1991 May;2(5):225–233. [PubMed] [Google Scholar]
  35. Sharma K., Jin Y., Guo J., Ziyadeh F. N. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996 Apr;45(4):522–530. doi: 10.2337/diab.45.4.522. [DOI] [PubMed] [Google Scholar]
  36. Sharma K., Ziyadeh F. N. Renal hypertrophy is associated with upregulation of TGF-beta 1 gene expression in diabetic BB rat and NOD mouse. Am J Physiol. 1994 Dec;267(6 Pt 2):F1094–F1001. doi: 10.1152/ajprenal.1994.267.6.F1094. [DOI] [PubMed] [Google Scholar]
  37. Shi-wen X., Pennington D., Holmes A., Leask A., Bradham D., Beauchamp J. R., Fonseca C., du Bois R. M., Martin G. R., Black C. M. Autocrine overexpression of CTGF maintains fibrosis: RDA analysis of fibrosis genes in systemic sclerosis. Exp Cell Res. 2000 Aug 25;259(1):213–224. doi: 10.1006/excr.2000.4972. [DOI] [PubMed] [Google Scholar]
  38. Sraer J. D., Delarue F., Hagege J., Feunteun J., Pinet F., Nguyen G., Rondeau E. Stable cell lines of T-SV40 immortalized human glomerular mesangial cells. Kidney Int. 1996 Jan;49(1):267–270. doi: 10.1038/ki.1996.38. [DOI] [PubMed] [Google Scholar]
  39. Steffen C. L., Ball-Mirth D. K., Harding P. A., Bhattacharyya N., Pillai S., Brigstock D. R. Characterization of cell-associated and soluble forms of connective tissue growth factor (CTGF) produced by fibroblast cells in vitro. Growth Factors. 1998;15(3):199–213. doi: 10.3109/08977199809002117. [DOI] [PubMed] [Google Scholar]
  40. Stroschein S. L., Wang W., Luo K. Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor beta-induced smad-dependent transcriptional activation. J Biol Chem. 1999 Apr 2;274(14):9431–9441. doi: 10.1074/jbc.274.14.9431. [DOI] [PubMed] [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wahab N. A., Harper K., Mason R. M. Expression of extracellular matrix molecules in human mesangial cells in response to prolonged hyperglycaemia. Biochem J. 1996 Jun 15;316(Pt 3):985–992. doi: 10.1042/bj3160985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wahab N. A., Parker S., Sraer J. D., Mason R. M. The decorin high glucose response element and mechanism of its activation in human mesangial cells. J Am Soc Nephrol. 2000 Sep;11(9):1607–1619. doi: 10.1681/ASN.V1191607. [DOI] [PubMed] [Google Scholar]
  44. Wang L., Zhu Y., Sharma K. Transforming growth factor-beta1 stimulates protein kinase A in mesangial cells. J Biol Chem. 1998 Apr 3;273(14):8522–8527. doi: 10.1074/jbc.273.14.8522. [DOI] [PubMed] [Google Scholar]
  45. Yang D. H., Kim H. S., Wilson E. M., Rosenfeld R. G., Oh Y. Identification of glycosylated 38-kDa connective tissue growth factor (IGFBP-related protein 2) and proteolytic fragments in human biological fluids, and up-regulation of IGFBP-rP2 expression by TGF-beta in Hs578T human breast cancer cells. J Clin Endocrinol Metab. 1998 Jul;83(7):2593–2596. doi: 10.1210/jcem.83.7.5097. [DOI] [PubMed] [Google Scholar]
  46. Yevdokimova N., Wahab N. A., Mason R. M. Thrombospondin-1 is the key activator of TGF-beta1 in human mesangial cells exposed to high glucose. J Am Soc Nephrol. 2001 Apr;12(4):703–712. doi: 10.1681/ASN.V124703. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES