Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):99–108. doi: 10.1042/0264-6021:3590099

A Drosophila haemocyte-specific protein, hemolectin, similar to human von Willebrand factor.

A Goto 1, T Kumagai 1, C Kumagai 1, J Hirose 1, H Narita 1, H Mori 1, T Kadowaki 1, K Beck 1, Y Kitagawa 1
PMCID: PMC1222125  PMID: 11563973

Abstract

We identified a novel Drosophila protein of approximately 400 kDa, hemolectin (d-Hml), secreted from haemocyte-derived Kc167 cells. Its 11.7 kbp cDNA contains an open reading frame of 3843 amino acid residues, with conserved domains in von Willebrand factor (VWF), coagulation factor V/VIII and complement factors. The d-hml gene is located on the third chromosome (position 70C1-5) and consists of 26 exons. The major part of d-Hml consists of well-known motifs with the organization: CP1-EG1-CP2-EG2-CP3-VD1-VD2-VD'-VD3-VC1-VD"-VD"'-FC1-FC2-VC2-LA1-VD4-VD5-VC3-VB1-VB2-VC4-VC5-CK1 (CP, complement-control protein domain; EG, epidermal-growth-factor-like domain; VB, VC, VD, VWF type B-, C- and D-like domains; VD', VD", VD"', truncated C-terminal VDs; FC, coagulation factor V/VIII type C domain; LA, low-density-lipoprotein-receptor class A domain; CK, cysteine knot domain). The organization of VD1-VD2-VD'-VD3, essential for VWF to be processed by furin, to bind to coagulation factor VIII and to form interchain disulphide linkages, is conserved. The 400 kDa form of d-Hml was sensitive to acidic cleavage near the boundary between VD2 and VD', where the cleavage site of pro-VWF is located. Agarose-gel electrophoresis of metabolically radiolabelled d-Hml suggested that it is secreted from Kc167 cells mainly as dimers. Resembling VWF, 7.9% (305 residues) of cysteine residues on the d-Hml sequence had well-conserved positions in each motif. Coinciding with the development of phagocytic haemocytes, d-hml transcript was detected in late embryos and larvae. Its low-level expression in adult flies was induced by injury at any position on the body.

Full Text

The Full Text of this article is available as a PDF (495.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arai T., Kawasaki K., Kubo T., Natori S. Cloning of cDNA for regenectin, a humoral C-type lectin of Periplaneta americana, and expression of the regenectin gene during leg regeneration. Insect Biochem Mol Biol. 1998 Dec;28(12):987–994. doi: 10.1016/s0965-1748(98)00087-3. [DOI] [PubMed] [Google Scholar]
  3. Bernard V. D., Peanasky R. J. The serine protease inhibitor family from Ascaris suum: chemical determination of the five disulfide bridges. Arch Biochem Biophys. 1993 Jun;303(2):367–376. doi: 10.1006/abbi.1993.1297. [DOI] [PubMed] [Google Scholar]
  4. Bork P., Ouzounis C., McEntyre J. Ready for a motif submission? A proposed checklist. Trends Biochem Sci. 1995 Mar;20(3):104–104. doi: 10.1016/s0968-0004(00)88974-4. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cruz M. A., Diacovo T. G., Emsley J., Liddington R., Handin R. I. Mapping the glycoprotein Ib-binding site in the von willebrand factor A1 domain. J Biol Chem. 2000 Jun 23;275(25):19098–19105. doi: 10.1074/jbc.M002292200. [DOI] [PubMed] [Google Scholar]
  7. Desseyn J. L., Aubert J. P., Van Seuningen I., Porchet N., Laine A. Genomic organization of the 3' region of the human mucin gene MUC5B. J Biol Chem. 1997 Jul 4;272(27):16873–16883. doi: 10.1074/jbc.272.27.16873. [DOI] [PubMed] [Google Scholar]
  8. Duncan K. G., Fessler L. I., Bächinger H. P., Fessler J. H. Procollagen IV. Association to tetramers. J Biol Chem. 1983 May 10;258(9):5869–5877. [PubMed] [Google Scholar]
  9. Esser V., Limbird L. E., Brown M. S., Goldstein J. L., Russell D. W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol Chem. 1988 Sep 15;263(26):13282–13290. [PubMed] [Google Scholar]
  10. Fessler J. H., Nelson R. E., Fessler L. I. Preparation of extracellular matrix. Methods Cell Biol. 1994;44:303–328. doi: 10.1016/s0091-679x(08)60921-8. [DOI] [PubMed] [Google Scholar]
  11. Fessler L. I., Campbell A. G., Duncan K. G., Fessler J. H. Drosophila laminin: characterization and localization. J Cell Biol. 1987 Nov;105(5):2383–2391. doi: 10.1083/jcb.105.5.2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fujita Y., Kurata S., Homma K., Natori S. A novel lectin from Sarcophaga. Its purification, characterization, and cDNA cloning. J Biol Chem. 1998 Apr 17;273(16):9667–9672. doi: 10.1074/jbc.273.16.9667. [DOI] [PubMed] [Google Scholar]
  13. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
  14. Hofmann K., Bucher P., Falquet L., Bairoch A. The PROSITE database, its status in 1999. Nucleic Acids Res. 1999 Jan 1;27(1):215–219. doi: 10.1093/nar/27.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horton P., Nakai K. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc Int Conf Intell Syst Mol Biol. 1997;5:147–152. [PubMed] [Google Scholar]
  16. Jomori T., Natori S. Molecular cloning of cDNA for lipopolysaccharide-binding protein from the hemolymph of the American cockroach, Periplaneta americana. Similarity of the protein with animal lectins and its acute phase expression. J Biol Chem. 1991 Jul 15;266(20):13318–13323. [PubMed] [Google Scholar]
  17. Jorieux S., Fressinaud E., Goudemand J., Gaucher C., Meyer D., Mazurier C. Conformational changes in the D' domain of von Willebrand factor induced by CYS 25 and CYS 95 mutations lead to factor VIII binding defect and multimeric impairment. Blood. 2000 May 15;95(10):3139–3145. [PubMed] [Google Scholar]
  18. Kato H., Enjyoji K. Amino acid sequence and location of the disulfide bonds in bovine beta 2 glycoprotein I: the presence of five Sushi domains. Biochemistry. 1991 Dec 17;30(50):11687–11694. doi: 10.1021/bi00114a012. [DOI] [PubMed] [Google Scholar]
  19. Katsumi A., Tuley E. A., Bodó I., Sadler J. E. Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. J Biol Chem. 2000 Aug 18;275(33):25585–25594. doi: 10.1074/jbc.M002654200. [DOI] [PubMed] [Google Scholar]
  20. Kawasaki K., Kubo T., Natori S. Presence of the Periplaneta lectin-related protein family in the American cockroach Periplaneta americana. Insect Biochem Mol Biol. 1996 Apr;26(4):355–364. doi: 10.1016/0965-1748(95)00101-8. [DOI] [PubMed] [Google Scholar]
  21. Kotani E., Yamakawa M., Iwamoto S., Tashiro M., Mori H., Sumida M., Matsubara F., Taniai K., Kadono-Okuda K., Kato Y. Cloning and expression of the gene of hemocytin, an insect humoral lectin which is homologous with the mammalian von Willebrand factor. Biochim Biophys Acta. 1995 Feb 21;1260(3):245–258. doi: 10.1016/0167-4781(94)00202-e. [DOI] [PubMed] [Google Scholar]
  22. Kubo T., Kawasaki K., Natori S. Transient appearance and localization of a 26-kDa lectin, a novel member of the Periplaneta lectin family, in regenerating cockroach leg. Dev Biol. 1993 Apr;156(2):381–390. doi: 10.1006/dbio.1993.1085. [DOI] [PubMed] [Google Scholar]
  23. Kubo T., Natori S. Purification and some properties of a lectin from the hemolymph of Periplaneta americana (American cockroach). Eur J Biochem. 1987 Oct 1;168(1):75–82. doi: 10.1111/j.1432-1033.1987.tb13389.x. [DOI] [PubMed] [Google Scholar]
  24. Kumagai C., Kadowaki T., Kitagawa Y. Disulfide-bonding between Drosophila laminin beta and gamma chains is essential for alpha chain to form alpha betagamma trimer. FEBS Lett. 1997 Jul 21;412(1):211–216. doi: 10.1016/s0014-5793(97)00780-1. [DOI] [PubMed] [Google Scholar]
  25. Kumagai T., Yokoyama H., Goto A., Hirose J., Kadowaki T., Narita H., Kitagawa Y. Screening for Drosophila proteins with distinct expression patterns during development by use of monoclonal antibodies. Biosci Biotechnol Biochem. 2000 Jan;64(1):24–28. doi: 10.1271/bbb.64.24. [DOI] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Marti T., Rösselet S. J., Titani K., Walsh K. A. Identification of disulfide-bridged substructures within human von Willebrand factor. Biochemistry. 1987 Dec 15;26(25):8099–8109. doi: 10.1021/bi00399a013. [DOI] [PubMed] [Google Scholar]
  28. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  29. McDonald N. Q., Hendrickson W. A. A structural superfamily of growth factors containing a cystine knot motif. Cell. 1993 May 7;73(3):421–424. doi: 10.1016/0092-8674(93)90127-c. [DOI] [PubMed] [Google Scholar]
  30. Meitinger T., Meindl A., Bork P., Rost B., Sander C., Haasemann M., Murken J. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat Genet. 1993 Dec;5(4):376–380. doi: 10.1038/ng1293-376. [DOI] [PubMed] [Google Scholar]
  31. Mori H., Iwamoto S., Kotani E., Sumida M., Matsumoto T., Matsubara F. Isolation of cDNA clones coding for humoral lectin of silkworm, Bombyx mori, larvae. J Invertebr Pathol. 1992 Jan;59(1):40–45. doi: 10.1016/0022-2011(92)90109-h. [DOI] [PubMed] [Google Scholar]
  32. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  33. Niimi T., Yokoyama H., Goto A., Beck K., Kitagawa Y. A Drosophila gene encoding multiple splice variants of Kazal-type serine protease inhibitor-like proteins with potential destinations of mitochondria, cytosol and the secretory pathway. Eur J Biochem. 1999 Nov;266(1):282–292. doi: 10.1046/j.1432-1327.1999.00873.x. [DOI] [PubMed] [Google Scholar]
  34. Norman D. G., Barlow P. N., Baron M., Day A. J., Sim R. B., Campbell I. D. Three-dimensional structure of a complement control protein module in solution. J Mol Biol. 1991 Jun 20;219(4):717–725. doi: 10.1016/0022-2836(91)90666-t. [DOI] [PubMed] [Google Scholar]
  35. Pareti F. I., Niiya K., McPherson J. M., Ruggeri Z. M. Isolation and characterization of two domains of human von Willebrand factor that interact with fibrillar collagen types I and III. J Biol Chem. 1987 Oct 5;262(28):13835–13841. [PubMed] [Google Scholar]
  36. Rehemtulla A., Kaufman R. J. Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood. 1992 May 1;79(9):2349–2355. [PubMed] [Google Scholar]
  37. Romijn R. A., Bouma B., Wuyster W., Gros P., Kroon J., Sixma J. J., Huizinga E. G. Identification of the collagen-binding site of the von Willebrand factor A3-domain. J Biol Chem. 2000 Nov 29;276(13):9985–9991. doi: 10.1074/jbc.M006548200. [DOI] [PubMed] [Google Scholar]
  38. Russell D. W., Brown M. S., Goldstein J. L. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J Biol Chem. 1989 Dec 25;264(36):21682–21688. [PubMed] [Google Scholar]
  39. Sadler J. E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424. doi: 10.1146/annurev.biochem.67.1.395. [DOI] [PubMed] [Google Scholar]
  40. Sonnhammer E. L., Eddy S. R., Birney E., Bateman A., Durbin R. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 1998 Jan 1;26(1):320–322. doi: 10.1093/nar/26.1.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sporn L. A., Marder V. J., Wagner D. D. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell. 1986 Jul 18;46(2):185–190. doi: 10.1016/0092-8674(86)90735-x. [DOI] [PubMed] [Google Scholar]
  42. Tepass U., Fessler L. I., Aziz A., Hartenstein V. Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development. 1994 Jul;120(7):1829–1837. doi: 10.1242/dev.120.7.1829. [DOI] [PubMed] [Google Scholar]
  43. Theopold U., Rissler M., Fabbri M., Schmidt O., Natori S. Insect glycobiology: a lectin multigene family in Drosophila melanogaster. Biochem Biophys Res Commun. 1999 Aug 11;261(3):923–927. doi: 10.1006/bbrc.1999.1121. [DOI] [PubMed] [Google Scholar]
  44. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Verweij C. L., Diergaarde P. J., Hart M., Pannekoek H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J. 1986 Aug;5(8):1839–1847. doi: 10.1002/j.1460-2075.1986.tb04435.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vischer U. M., Wollheim C. B. Purine nucleotides induce regulated secretion of von Willebrand factor: involvement of cytosolic Ca2+ and cyclic adenosine monophosphate-dependent signaling in endothelial exocytosis. Blood. 1998 Jan 1;91(1):118–127. [PubMed] [Google Scholar]
  47. Voorberg J., Fontijn R., Calafat J., Janssen H., van Mourik J. A., Pannekoek H. Assembly and routing of von Willebrand factor variants: the requirements for disulfide-linked dimerization reside within the carboxy-terminal 151 amino acids. J Cell Biol. 1991 Apr;113(1):195–205. doi: 10.1083/jcb.113.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wagner D. D., Saffaripour S., Bonfanti R., Sadler J. E., Cramer E. M., Chapman B., Mayadas T. N. Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell. 1991 Jan 25;64(2):403–413. doi: 10.1016/0092-8674(91)90648-i. [DOI] [PubMed] [Google Scholar]
  49. Wagner D. D. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thromb Haemost. 1993 Jul 1;70(1):105–110. [PubMed] [Google Scholar]
  50. Yokoyama K., Handa M., Oda A., Katayama M., Fujimura Y., Murata M., Kawai Y., Watanabe K., Ikeda Y. Characterization of the novel murine monoclonal anti-von Willebrand factor (vWf) antibody GUR76-23 which inhibits vWf interaction with alpha IIb beta 3 but not alpha v beta 3 integrin. Biochem Biophys Res Commun. 1997 May 8;234(1):147–152. doi: 10.1006/bbrc.1997.6605. [DOI] [PubMed] [Google Scholar]
  51. van der Plas R. M., Gomes L., Marquart J. A., Vink T., Meijers J. C., de Groot P. G., Sixma J. J., Huizinga E. G. Binding of von Willebrand factor to collagen type III: role of specific amino acids in the collagen binding domain of vWF and effects of neighboring domains. Thromb Haemost. 2000 Dec;84(6):1005–1011. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES