Abstract
This study was aimed at assessing the effects of long-term exposure to NO of respiratory activities in mitochondria from different tissues (with different ubiquinol contents), under conditions that either promote or prevent the formation of peroxynitrite. Mitochondria and submitochondrial particles isolated from rat heart, liver and brain were exposed either to a steady-state concentration or to a bolus addition of NO. NO induced the mitochondrial production of superoxide anions, hydrogen peroxide and peroxynitrite, the latter shown by nitration of mitochondrial proteins. Long-term incubation of mitochondrial membranes with NO resulted in a persistent inhibition of NADH:cytochrome c reductase activity, interpreted as inhibition of NADH:ubiquinone reductase (Complex I) activity, whereas succinate:cytochrome c reductase activity, including Complex II and Complex III electron transfer, remained unaffected. This selective effect of NO and derived species was partially prevented by superoxide dismutase and uric acid. In addition, peroxynitrite mimicked the effect of NO, including tyrosine nitration of some Complex I proteins. These results seem to indicate that the inhibition of NADH:ubiquinone reductase (Complex I) activity depends on the NO-induced generation of superoxide radical and peroxynitrite and that Complex I is selectively sensitive to peroxynitrite. Inhibition of Complex I activity by peroxynitrite may have critical implications for energy supply in tissues such as the brain, whose mitochondrial function depends largely on the channelling of reducing equivalents through Complex I.
Full Text
The Full Text of this article is available as a PDF (186.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Badano B. N., Boveris A., Stoppani A. O., Vidal J. C. The action of Bothrops neuwiedii phospholipase A2 on mitochondrial phospholipids and electron transfer. Mol Cell Biochem. 1973 Dec 15;2(2):157–167. doi: 10.1007/BF01795470. [DOI] [PubMed] [Google Scholar]
- Beavis A. D., Brannan R. D., Garlid K. D. Swelling and contraction of the mitochondrial matrix. I. A structural interpretation of the relationship between light scattering and matrix volume. J Biol Chem. 1985 Nov 5;260(25):13424–13433. [PubMed] [Google Scholar]
- Beckman J. S., Chen J., Ischiropoulos H., Crow J. P. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233:229–240. doi: 10.1016/s0076-6879(94)33026-3. [DOI] [PubMed] [Google Scholar]
- Betarbet R., Sherer T. B., MacKenzie G., Garcia-Osuna M., Panov A. V., Greenamyre J. T. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000 Dec;3(12):1301–1306. doi: 10.1038/81834. [DOI] [PubMed] [Google Scholar]
- Boczkowski J., Lisdero C. L., Lanone S., Samb A., Carreras M. C., Boveris A., Aubier M., Poderoso J. J. Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. FASEB J. 1999 Sep;13(12):1637–1646. doi: 10.1096/fasebj.13.12.1637. [DOI] [PubMed] [Google Scholar]
- Borutaite V., Budriunaite A., Brown G. C. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):405–412. doi: 10.1016/s0005-2728(00)00178-x. [DOI] [PubMed] [Google Scholar]
- Boveris A., Costa L. E., Cadenas E., Poderoso J. J. Regulation of mitochondrial respiration by adenosine diphosphate, oxygen, and nitric oxide. Methods Enzymol. 1999;301:188–198. doi: 10.1016/s0076-6879(99)01082-4. [DOI] [PubMed] [Google Scholar]
- Boveris A., Stoppani A. O. Inhibition of electron and energy transfer in mitochondria by 19-nor-ethynyltestosterone acetate. Arch Biochem Biophys. 1970 Dec;141(2):641–655. doi: 10.1016/0003-9861(70)90184-0. [DOI] [PubMed] [Google Scholar]
- Brown G. C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995 Aug 7;369(2-3):136–139. doi: 10.1016/0014-5793(95)00763-y. [DOI] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R., HOLLUNGER G. Inhibition of electron and energy transfer in mitochondria. I. Effects of Amytal, thiopental, rotenone, progesterone, and methylene glycol. J Biol Chem. 1963 Jan;238:418–431. [PubMed] [Google Scholar]
- Cadenas E., Boveris A., Ragan C. I., Stoppani A. O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977 Apr 30;180(2):248–257. doi: 10.1016/0003-9861(77)90035-2. [DOI] [PubMed] [Google Scholar]
- Cassina A., Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996 Apr 15;328(2):309–316. doi: 10.1006/abbi.1996.0178. [DOI] [PubMed] [Google Scholar]
- Cleeter M. W., Cooper J. M., Darley-Usmar V. M., Moncada S., Schapira A. H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994 May 23;345(1):50–54. doi: 10.1016/0014-5793(94)00424-2. [DOI] [PubMed] [Google Scholar]
- Cleeter M. W., Cooper J. M., Schapira A. H. Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem. 1992 Feb;58(2):786–789. doi: 10.1111/j.1471-4159.1992.tb09789.x. [DOI] [PubMed] [Google Scholar]
- Clementi E., Brown G. C., Feelisch M., Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7631–7636. doi: 10.1073/pnas.95.13.7631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giasson B. I., Duda J. E., Murray I. V., Chen Q., Souza J. M., Hurtig H. I., Ischiropoulos H., Trojanowski J. Q., Lee V. M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000 Nov 3;290(5493):985–989. doi: 10.1126/science.290.5493.985. [DOI] [PubMed] [Google Scholar]
- Granger D. L., Lehninger A. L., Hibbs J. B., Jr Aberrant oxygen metabolism in neoplastic cells injured by cytotoxic macrophages. Adv Exp Med Biol. 1985;184:51–63. doi: 10.1007/978-1-4684-8326-0_4. [DOI] [PubMed] [Google Scholar]
- Hyslop P. A., Sklar L. A. A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes. Anal Biochem. 1984 Aug 15;141(1):280–286. doi: 10.1016/0003-2697(84)90457-3. [DOI] [PubMed] [Google Scholar]
- Ischiropoulos H., Zhu L., Beckman J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992 Nov 1;298(2):446–451. doi: 10.1016/0003-9861(92)90433-w. [DOI] [PubMed] [Google Scholar]
- Kissner R., Nauser T., Bugnon P., Lye P. G., Koppenol W. H. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol. 1997 Nov;10(11):1285–1292. doi: 10.1021/tx970160x. [DOI] [PubMed] [Google Scholar]
- Orsi A., Beltrán B., Clementi E., Hallén K., Feelisch M., Moncada S. Continuous exposure to high concentrations of nitric oxide leads to persistent inhibition of oxygen consumption by J774 cells as well as extraction of oxygen by the extracellular medium. Biochem J. 2000 Mar 1;346(Pt 2):407–412. [PMC free article] [PubMed] [Google Scholar]
- Poderoso J. J., Carreras M. C., Lisdero C., Riobó N., Schöpfer F., Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996 Apr 1;328(1):85–92. doi: 10.1006/abbi.1996.0146. [DOI] [PubMed] [Google Scholar]
- Poderoso J. J., Carreras M. C., Schöpfer F., Lisdero C. L., Riobó N. A., Giulivi C., Boveris A. D., Boveris A., Cadenas E. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic Biol Med. 1999 Apr;26(7-8):925–935. doi: 10.1016/s0891-5849(98)00277-9. [DOI] [PubMed] [Google Scholar]
- Poderoso J. J., Lisdero C., Schöpfer F., Riobó N., Carreras M. C., Cadenas E., Boveris A. The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol. J Biol Chem. 1999 Dec 31;274(53):37709–37716. doi: 10.1074/jbc.274.53.37709. [DOI] [PubMed] [Google Scholar]
- Schapira A. H., Cooper J. M., Dexter D., Clark J. B., Jenner P., Marsden C. D. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem. 1990 Mar;54(3):823–827. doi: 10.1111/j.1471-4159.1990.tb02325.x. [DOI] [PubMed] [Google Scholar]
- Schöpfer F., Riobó N., Carreras M. C., Alvarez B., Radi R., Boveris A., Cadenas E., Poderoso J. J. Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage. Biochem J. 2000 Jul 1;349(Pt 1):35–42. doi: 10.1042/0264-6021:3490035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. E. Determination of the structures of respiratory enzyme complexes from mammalian mitochondria. Biochim Biophys Acta. 1995 May 24;1271(1):221–227. doi: 10.1016/0925-4439(95)00031-x. [DOI] [PubMed] [Google Scholar]