Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):153–163. doi: 10.1042/0264-6021:3590153

A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor.

G Ghiselli 1, I Eichstetter 1, R V Iozzo 1
PMCID: PMC1222131  PMID: 11563979

Abstract

Perlecan, a widespread heparan sulphate (HS) proteoglycan, is directly involved in the storing of angiogenic growth factors, mostly members of the fibroblast growth factor (FGF) gene family. We have previously shown that antisense targeting of the perlecan gene causes a reduced growth and responsiveness to FGF7 [also known as keratinocyte growth factor (KGF)] in human cancer cells, and that the perlecan protein core interacts specifically with FGF7. In the present paper, we have investigated human colon carcinoma cells in which the perlecan gene was disrupted by targeted homologous recombination. After screening over 1000 clones, we obtained two clones heterozygous for the null mutation with no detectable perlecan, indicating that the other allele was non-functioning. The perlecan-deficient cells grew more slowly, did not respond to FGF7 with or without the addition of heparin, and were less tumorigenic than control cells. Paradoxically, the perlecan-deficient cells displayed increased FGF7 surface binding. However, the perlecan protein core was required for functional activation of the KGF receptor and downstream signalling. Because heparin could not substitute for perlecan, the HS chains are not critical for FGF7-mediated signalling in this cell system. These results provide the first genetic evidence that the perlecan protein core is a molecular entity implicated in FGF7 binding and activation of its receptor.

Full Text

The Full Text of this article is available as a PDF (361.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S. A., Bottaro D. P., Miki T., Ron D., Finch P. W., Fleming T. P., Ahn J., Taylor W. G., Rubin J. S. Keratinocyte growth factor. A fibroblast growth factor family member with unusual target cell specificity. Ann N Y Acad Sci. 1991;638:62–77. doi: 10.1111/j.1749-6632.1991.tb49018.x. [DOI] [PubMed] [Google Scholar]
  2. Adatia R., Albini A., Carlone S., Giunciuglio D., Benelli R., Santi L., Noonan D. M. Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA. Ann Oncol. 1997 Dec;8(12):1257–1261. doi: 10.1023/a:1008243115385. [DOI] [PubMed] [Google Scholar]
  3. Arikawa-Hirasawa E., Watanabe H., Takami H., Hassell J. R., Yamada Y. Perlecan is essential for cartilage and cephalic development. Nat Genet. 1999 Nov;23(3):354–358. doi: 10.1038/15537. [DOI] [PubMed] [Google Scholar]
  4. Aviezer D., Hecht D., Safran M., Eisinger M., David G., Yayon A. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell. 1994 Dec 16;79(6):1005–1013. doi: 10.1016/0092-8674(94)90031-0. [DOI] [PubMed] [Google Scholar]
  5. Aviezer D., Iozzo R. V., Noonan D. M., Yayon A. Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol Cell Biol. 1997 Apr;17(4):1938–1946. doi: 10.1128/mcb.17.4.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aviezer D., Levy E., Safran M., Svahn C., Buddecke E., Schmidt A., David G., Vlodavsky I., Yayon A. Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J Biol Chem. 1994 Jan 7;269(1):114–121. [PubMed] [Google Scholar]
  7. Basilico C., Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–165. doi: 10.1016/s0065-230x(08)60305-x. [DOI] [PubMed] [Google Scholar]
  8. Berman B., Ostrovsky O., Shlissel M., Lang T., Regan D., Vlodavsky I., Ishai-Michaeli R., Ron D. Similarities and differences between the effects of heparin and glypican-1 on the bioactivity of acidic fibroblast growth factor and the keratinocyte growth factor. J Biol Chem. 1999 Dec 17;274(51):36132–36138. doi: 10.1074/jbc.274.51.36132. [DOI] [PubMed] [Google Scholar]
  9. Bernfield M., Götte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729. [DOI] [PubMed] [Google Scholar]
  10. Bonneh-Barkay D., Shlissel M., Berman B., Shaoul E., Admon A., Vlodavsky I., Carey D. J., Asundi V. K., Reich-Slotky R., Ron D. Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J Biol Chem. 1997 May 9;272(19):12415–12421. doi: 10.1074/jbc.272.19.12415. [DOI] [PubMed] [Google Scholar]
  11. Buczek-Thomas J. A., Nugent M. A. Elastase-mediated release of heparan sulfate proteoglycans from pulmonary fibroblast cultures. A mechanism for basic fibroblast growth factor (bFGF) release and attenuation of bfgf binding following elastase-induced injury. J Biol Chem. 1999 Aug 27;274(35):25167–25172. doi: 10.1074/jbc.274.35.25167. [DOI] [PubMed] [Google Scholar]
  12. Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J. P., Sedivy J. M., Kinzler K. W., Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998 Nov 20;282(5393):1497–1501. doi: 10.1126/science.282.5393.1497. [DOI] [PubMed] [Google Scholar]
  13. Chellaiah A., Yuan W., Chellaiah M., Ornitz D. M. Mapping ligand binding domains in chimeric fibroblast growth factor receptor molecules. Multiple regions determine ligand binding specificity. J Biol Chem. 1999 Dec 3;274(49):34785–34794. doi: 10.1074/jbc.274.49.34785. [DOI] [PubMed] [Google Scholar]
  14. Cohen I. R., Grässel S., Murdoch A. D., Iozzo R. V. Structural characterization of the complete human perlecan gene and its promoter. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10404–10408. doi: 10.1073/pnas.90.21.10404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Costell M., Gustafsson E., Aszódi A., Mörgelin M., Bloch W., Hunziker E., Addicks K., Timpl R., Fässler R. Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol. 1999 Nov 29;147(5):1109–1122. doi: 10.1083/jcb.147.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Davis J. C., Venkataraman G., Shriver Z., Raj P. A., Sasisekharan R. Oligomeric self-association of basic fibroblast growth factor in the absence of heparin-like glycosaminoglycans. Biochem J. 1999 Aug 1;341(Pt 3):613–620. [PMC free article] [PubMed] [Google Scholar]
  17. Dolan M., Horchar T., Rigatti B., Hassell J. R. Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J Biol Chem. 1997 Feb 14;272(7):4316–4322. doi: 10.1074/jbc.272.7.4316. [DOI] [PubMed] [Google Scholar]
  18. Fannon M., Nugent M. A. Basic fibroblast growth factor binds its receptors, is internalized, and stimulates DNA synthesis in Balb/c3T3 cells in the absence of heparan sulfate. J Biol Chem. 1996 Jul 26;271(30):17949–17956. doi: 10.1074/jbc.271.30.17949. [DOI] [PubMed] [Google Scholar]
  19. Friesel R., Maciag T. Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb Haemost. 1999 Aug;82(2):748–754. [PubMed] [Google Scholar]
  20. Gallagher J. T. The extended family of proteoglycans: social residents of the pericellular zone. Curr Opin Cell Biol. 1989 Dec;1(6):1201–1218. doi: 10.1016/s0955-0674(89)80072-9. [DOI] [PubMed] [Google Scholar]
  21. Handler M., Yurchenco P. D., Iozzo R. V. Developmental expression of perlecan during murine embryogenesis. Dev Dyn. 1997 Oct;210(2):130–145. doi: 10.1002/(SICI)1097-0177(199710)210:2<130::AID-AJA6>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  22. Hanson K. D., Sedivy J. M. Analysis of biological selections for high-efficiency gene targeting. Mol Cell Biol. 1995 Jan;15(1):45–51. doi: 10.1128/mcb.15.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hsu Y. R., Nybo R., Sullivan J. K., Costigan V., Spahr C. S., Wong C., Jones M., Pentzer A. G., Crouse J. A., Pacifici R. E. Heparin is essential for a single keratinocyte growth factor molecule to bind and form a complex with two molecules of the extracellular domain of its receptor. Biochemistry. 1999 Feb 23;38(8):2523–2534. doi: 10.1021/bi9821317. [DOI] [PubMed] [Google Scholar]
  24. Iozzo R. V. Biosynthesis of heparan sulfate proteoglycan by human colon carcinoma cells and its localization at the cell surface. J Cell Biol. 1984 Aug;99(2):403–417. doi: 10.1083/jcb.99.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Iozzo R. V., Chakrani F., Perrotti D., McQuillan D. J., Skorski T., Calabretta B., Eichstetter I. Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3092–3097. doi: 10.1073/pnas.96.6.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Iozzo R. V. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–652. doi: 10.1146/annurev.biochem.67.1.609. [DOI] [PubMed] [Google Scholar]
  27. Iozzo R. V., Murdoch A. D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996 Apr;10(5):598–614. [PubMed] [Google Scholar]
  28. Kallunki P., Tryggvason K. Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Cell Biol. 1992 Jan;116(2):559–571. doi: 10.1083/jcb.116.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kim P. J., Sakaguchi K., Sakamoto H., Saxinger C., Day R., McPhie P., Rubin J. S., Bottaro D. P. Colocalization of heparin and receptor binding sites on keratinocyte growth factor. Biochemistry. 1998 Jun 23;37(25):8853–8862. doi: 10.1021/bi9801917. [DOI] [PubMed] [Google Scholar]
  30. LaRochelle W. J., Sakaguchi K., Atabey N., Cheon H. G., Takagi Y., Kinaia T., Day R. M., Miki T., Burgess W. H., Bottaro D. P. Heparan sulfate proteoglycan modulates keratinocyte growth factor signaling through interaction with both ligand and receptor. Biochemistry. 1999 Feb 9;38(6):1765–1771. doi: 10.1021/bi982092z. [DOI] [PubMed] [Google Scholar]
  31. Lindahl U., Kusche-Gullberg M., Kjellén L. Regulated diversity of heparan sulfate. J Biol Chem. 1998 Sep 25;273(39):24979–24982. doi: 10.1074/jbc.273.39.24979. [DOI] [PubMed] [Google Scholar]
  32. Mathiak M., Yenisey C., Grant D. S., Sharma B., Iozzo R. V. A role for perlecan in the suppression of growth and invasion in fibrosarcoma cells. Cancer Res. 1997 Jun 1;57(11):2130–2136. [PubMed] [Google Scholar]
  33. McKeehan W. L., Wang F., Kan M. The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol. 1998;59:135–176. doi: 10.1016/s0079-6603(08)61031-4. [DOI] [PubMed] [Google Scholar]
  34. Mongiat M., Taylor K., Otto J., Aho S., Uitto J., Whitelock J. M., Iozzo R. V. The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7. J Biol Chem. 2000 Mar 10;275(10):7095–7100. doi: 10.1074/jbc.275.10.7095. [DOI] [PubMed] [Google Scholar]
  35. Moscatelli D. Metabolism of receptor-bound and matrix-bound basic fibroblast growth factor by bovine capillary endothelial cells. J Cell Biol. 1988 Aug;107(2):753–759. doi: 10.1083/jcb.107.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Murdoch A. D., Dodge G. R., Cohen I., Tuan R. S., Iozzo R. V. Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Biol Chem. 1992 Apr 25;267(12):8544–8557. [PubMed] [Google Scholar]
  37. Murdoch A. D., Liu B., Schwarting R., Tuan R. S., Iozzo R. V. Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem. 1994 Feb;42(2):239–249. doi: 10.1177/42.2.7507142. [DOI] [PubMed] [Google Scholar]
  38. Noonan D. M., Fulle A., Valente P., Cai S., Horigan E., Sasaki M., Yamada Y., Hassell J. R. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J Biol Chem. 1991 Dec 5;266(34):22939–22947. [PubMed] [Google Scholar]
  39. Nugent M. A., Karnovsky M. J., Edelman E. R. Vascular cell-derived heparan sulfate shows coupled inhibition of basic fibroblast growth factor binding and mitogenesis in vascular smooth muscle cells. Circ Res. 1993 Dec;73(6):1051–1060. doi: 10.1161/01.res.73.6.1051. [DOI] [PubMed] [Google Scholar]
  40. Ornitz D. M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays. 2000 Feb;22(2):108–112. doi: 10.1002/(SICI)1521-1878(200002)22:2<108::AID-BIES2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  41. Ornitz D. M., Herr A. B., Nilsson M., Westman J., Svahn C. M., Waksman G. FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science. 1995 Apr 21;268(5209):432–436. doi: 10.1126/science.7536345. [DOI] [PubMed] [Google Scholar]
  42. Ornitz D. M., Xu J., Colvin J. S., McEwen D. G., MacArthur C. A., Coulier F., Gao G., Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996 Jun 21;271(25):15292–15297. doi: 10.1074/jbc.271.25.15292. [DOI] [PubMed] [Google Scholar]
  43. Parsons R., Li G. M., Longley M. J., Fang W. H., Papadopoulos N., Jen J., de la Chapelle A., Kinzler K. W., Vogelstein B., Modrich P. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993 Dec 17;75(6):1227–1236. doi: 10.1016/0092-8674(93)90331-j. [DOI] [PubMed] [Google Scholar]
  44. Pellegrini L., Burke D. F., von Delft F., Mulloy B., Blundell T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000 Oct 26;407(6807):1029–1034. doi: 10.1038/35039551. [DOI] [PubMed] [Google Scholar]
  45. Perrimon N., Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature. 2000 Apr 13;404(6779):725–728. doi: 10.1038/35008000. [DOI] [PubMed] [Google Scholar]
  46. Plotnikov A. N., Schlessinger J., Hubbard S. R., Mohammadi M. Structural basis for FGF receptor dimerization and activation. Cell. 1999 Sep 3;98(5):641–650. doi: 10.1016/s0092-8674(00)80051-3. [DOI] [PubMed] [Google Scholar]
  47. Pye D. A., Gallagher J. T. Monomer complexes of basic fibroblast growth factor and heparan sulfate oligosaccharides are the minimal functional unit for cell activation. J Biol Chem. 1999 May 7;274(19):13456–13461. doi: 10.1074/jbc.274.19.13456. [DOI] [PubMed] [Google Scholar]
  48. Rapraeger A. C., Krufka A., Olwin B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991 Jun 21;252(5013):1705–1708. doi: 10.1126/science.1646484. [DOI] [PubMed] [Google Scholar]
  49. Roghani M., Moscatelli D. Basic fibroblast growth factor is internalized through both receptor-mediated and heparan sulfate-mediated mechanisms. J Biol Chem. 1992 Nov 5;267(31):22156–22162. [PubMed] [Google Scholar]
  50. Schlessinger J., Plotnikov A. N., Ibrahimi O. A., Eliseenkova A. V., Yeh B. K., Yayon A., Linhardt R. J., Mohammadi M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000 Sep;6(3):743–750. doi: 10.1016/s1097-2765(00)00073-3. [DOI] [PubMed] [Google Scholar]
  51. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  52. Sharma B., Handler M., Eichstetter I., Whitelock J. M., Nugent M. A., Iozzo R. V. Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Invest. 1998 Oct 15;102(8):1599–1608. doi: 10.1172/JCI3793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Steinfeld R., Van Den Berghe H., David G. Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol. 1996 Apr;133(2):405–416. doi: 10.1083/jcb.133.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Szebenyi G., Fallon J. F. Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol. 1999;185:45–106. doi: 10.1016/s0074-7696(08)60149-7. [DOI] [PubMed] [Google Scholar]
  55. Tumova S., Woods A., Couchman J. R. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol. 2000 Mar;32(3):269–288. doi: 10.1016/s1357-2725(99)00116-8. [DOI] [PubMed] [Google Scholar]
  56. Waldman A. S. Targeted homologous recombination in mammalian cells. Crit Rev Oncol Hematol. 1992 Jan;12(1):49–64. doi: 10.1016/1040-8428(92)90064-w. [DOI] [PubMed] [Google Scholar]
  57. Waldman T., Kinzler K. W., Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995 Nov 15;55(22):5187–5190. [PubMed] [Google Scholar]
  58. Waldman T., Lengauer C., Kinzler K. W., Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature. 1996 Jun 20;381(6584):713–716. doi: 10.1038/381713a0. [DOI] [PubMed] [Google Scholar]
  59. Wang F., Lu W., McKeehan K., Mohamedali K., Gabriel J. L., Kan M., McKeehan W. L. Common and specific determinants for fibroblast growth factors in the ectodomain of the receptor kinase complex. Biochemistry. 1999 Jan 5;38(1):160–171. doi: 10.1021/bi981758m. [DOI] [PubMed] [Google Scholar]
  60. Werner S., Smola H., Liao X., Longaker M. T., Krieg T., Hofschneider P. H., Williams L. T. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science. 1994 Nov 4;266(5186):819–822. doi: 10.1126/science.7973639. [DOI] [PubMed] [Google Scholar]
  61. Whitelock J. M., Murdoch A. D., Iozzo R. V., Underwood P. A. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem. 1996 Apr 26;271(17):10079–10086. doi: 10.1074/jbc.271.17.10079. [DOI] [PubMed] [Google Scholar]
  62. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]
  63. van der Geer P., Hunter T., Lindberg R. A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. doi: 10.1146/annurev.cb.10.110194.001343. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES