Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):165–173. doi: 10.1042/0264-6021:3590165

FYVE zinc-finger proteins in the plant model Arabidopsis thaliana: identification of PtdIns3P-binding residues by comparison of classic and variant FYVE domains.

R B Jensen 1, T La Cour 1, J Albrethsen 1, M Nielsen 1, K Skriver 1
PMCID: PMC1222132  PMID: 11563980

Abstract

Classic FYVE zinc-finger domains recognize the phosphoinositide signal PtdIns3P and share the basic (R/K)(1)(R/K)HHCR(6) (single-letter amino acid codes) consensus sequence. This domain is present in predicted PtdIns3P 5-kinases and lipases from Arabidopsis thaliana. Other Arabidopsis proteins, named PRAF, consist of a pleckstrin homology (PH) domain, a regulator of chromosome condensation (RCC1) guanine nucleotide exchange factor repeat domain, and a variant FYVE domain containing an Asn residue and a Tyr residue at positions corresponding to the PtdIns3P-interacting His(4) and Arg(6) of the basic motif. Dot-blot and liposome-binding assays were used in vitro to examine the phospholipid-binding ability of isolated PRAF domains. Whereas the PH domain preferentially bound PtdIns(4,5)P(2), the variant FYVE domain showed a weaker charge-dependent binding of phosphoinositides. In contrast, specificity for PtdIns3P was obtained by mutagenic conversion of the variant into a classic FYVE domain (Asn(4),Tyr(6)-->His(4),Arg(6)). Separate substitutions of the variant residues were not sufficient to impose preferential binding of PtdIns3P, suggesting a co-operative effect of these residues in binding. A biochemical function for PRAF was indicated by its ability to catalyse guanine nucleotide exchange on some of the small GTPases of the Rab family, permitting a discussion of the biological roles of plant FYVE proteins and their regulation by phosphoinositides.

Full Text

The Full Text of this article is available as a PDF (310.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azuma Y., Renault L., García-Ranea J. A., Valencia A., Nishimoto T., Wittinghofer A. Model of the ran-RCC1 interaction using biochemical and docking experiments. J Mol Biol. 1999 Jun 18;289(4):1119–1130. doi: 10.1006/jmbi.1999.2820. [DOI] [PubMed] [Google Scholar]
  3. Baraldi E., Djinovic Carugo K., Hyvönen M., Surdo P. L., Riley A. M., Potter B. V., O'Brien R., Ladbury J. E., Saraste M. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure. 1999 Apr 15;7(4):449–460. doi: 10.1016/s0969-2126(99)80057-4. [DOI] [PubMed] [Google Scholar]
  4. Bischoff F. R., Ponstingl H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature. 1991 Nov 7;354(6348):80–82. doi: 10.1038/354080a0. [DOI] [PubMed] [Google Scholar]
  5. Bischoff F., Molendijk A., Rajendrakumar C. S., Palme K. GTP-binding proteins in plants. Cell Mol Life Sci. 1999 Feb;55(2):233–256. doi: 10.1007/s000180050287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bottomley M. J., Salim K., Panayotou G. Phospholipid-binding protein domains. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):165–183. doi: 10.1016/s0005-2760(98)00141-6. [DOI] [PubMed] [Google Scholar]
  7. Brick D. J., Brumlik M. J., Buckley J. T., Cao J. X., Davies P. C., Misra S., Tranbarger T. J., Upton C. A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS Lett. 1995 Dec 27;377(3):475–480. doi: 10.1016/0014-5793(95)01405-5. [DOI] [PubMed] [Google Scholar]
  8. Burd C. G., Emr S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell. 1998 Jul;2(1):157–162. doi: 10.1016/s1097-2765(00)80125-2. [DOI] [PubMed] [Google Scholar]
  9. Burton J. L., Slepnev V., De Camilli P. V. An evolutionarily conserved domain in a subfamily of Rabs is crucial for the interaction with the guanyl nucleotide exchange factor Mss4. J Biol Chem. 1997 Feb 7;272(6):3663–3668. doi: 10.1074/jbc.272.6.3663. [DOI] [PubMed] [Google Scholar]
  10. Dasso M. RCC1 in the cell cycle: the regulator of chromosome condensation takes on new roles. Trends Biochem Sci. 1993 Mar;18(3):96–101. doi: 10.1016/0968-0004(93)90161-f. [DOI] [PubMed] [Google Scholar]
  11. Davletov B., Perisic O., Williams R. L. Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J Biol Chem. 1998 Jul 24;273(30):19093–19096. doi: 10.1074/jbc.273.30.19093. [DOI] [PubMed] [Google Scholar]
  12. Dowler S., Currie R. A., Campbell D. G., Deak M., Kular G., Downes C. P., Alessi D. R. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J. 2000 Oct 1;351(Pt 1):19–31. doi: 10.1042/0264-6021:3510019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Driscoll P. C. Solving the FYVE domain--PtdIns(3)P puzzle. Nat Struct Biol. 2001 Apr;8(4):287–290. doi: 10.1038/86144. [DOI] [PubMed] [Google Scholar]
  14. Gary J. D., Wurmser A. E., Bonangelino C. J., Weisman L. S., Emr S. D. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol. 1998 Oct 5;143(1):65–79. doi: 10.1083/jcb.143.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gaullier J. M., Ronning E., Gillooly D. J., Stenmark H. Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J Biol Chem. 2000 Aug 11;275(32):24595–24600. doi: 10.1074/jbc.M906554199. [DOI] [PubMed] [Google Scholar]
  16. Gaullier J. M., Simonsen A., D'Arrigo A., Bremnes B., Stenmark H., Aasland R. FYVE fingers bind PtdIns(3)P. Nature. 1998 Jul 30;394(6692):432–433. doi: 10.1038/28767. [DOI] [PubMed] [Google Scholar]
  17. Hayakawa A., Kitamura N. Early endosomal localization of hrs requires a sequence within the proline- and glutamine-rich region but not the FYVE finger. J Biol Chem. 2000 Sep 22;275(38):29636–29642. doi: 10.1074/jbc.M002696200. [DOI] [PubMed] [Google Scholar]
  18. Jensen R. B., Jensen K. L., Jespersen H. M., Skriver K. Widespread occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett. 1998 Oct 2;436(2):283–287. doi: 10.1016/s0014-5793(98)01143-0. [DOI] [PubMed] [Google Scholar]
  19. Joshi C. P., Zhou H., Huang X., Chiang V. L. Context sequences of translation initiation codon in plants. Plant Mol Biol. 1997 Dec;35(6):993–1001. doi: 10.1023/a:1005816823636. [DOI] [PubMed] [Google Scholar]
  20. Kavran J. M., Klein D. E., Lee A., Falasca M., Isakoff S. J., Skolnik E. Y., Lemmon M. A. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem. 1998 Nov 13;273(46):30497–30508. doi: 10.1074/jbc.273.46.30497. [DOI] [PubMed] [Google Scholar]
  21. Klein D. E., Lee A., Frank D. W., Marks M. S., Lemmon M. A. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J Biol Chem. 1998 Oct 16;273(42):27725–27733. doi: 10.1074/jbc.273.42.27725. [DOI] [PubMed] [Google Scholar]
  22. Kutateladze T. G., Ogburn K. D., Watson W. T., de Beer T., Emr S. D., Burd C. G., Overduin M. Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol Cell. 1999 Jun;3(6):805–811. doi: 10.1016/s1097-2765(01)80013-7. [DOI] [PubMed] [Google Scholar]
  23. Kutateladze T., Overduin M. Structural mechanism of endosome docking by the FYVE domain. Science. 2001 Mar 2;291(5509):1793–1796. doi: 10.1126/science.291.5509.1793. [DOI] [PubMed] [Google Scholar]
  24. Lawe D. C., Patki V., Heller-Harrison R., Lambright D., Corvera S. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J Biol Chem. 2000 Feb 4;275(5):3699–3705. doi: 10.1074/jbc.275.5.3699. [DOI] [PubMed] [Google Scholar]
  25. Lemmon M. A. Structural basis for high-affinity phosphoinositide binding by pleckstrin homology domains. Biochem Soc Trans. 1999 Aug;27(4):617–624. doi: 10.1042/bst0270617. [DOI] [PubMed] [Google Scholar]
  26. Mao Y., Nickitenko A., Duan X., Lloyd T. E., Wu M. N., Bellen H., Quiocho F. A. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell. 2000 Feb 18;100(4):447–456. doi: 10.1016/s0092-8674(00)80680-7. [DOI] [PubMed] [Google Scholar]
  27. Misra S., Hurley J. H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell. 1999 May 28;97(5):657–666. doi: 10.1016/s0092-8674(00)80776-x. [DOI] [PubMed] [Google Scholar]
  28. Munnik T., Irvine R. F., Musgrave A. Phospholipid signalling in plants. Biochim Biophys Acta. 1998 Jan 23;1389(3):222–272. doi: 10.1016/s0005-2760(97)00158-6. [DOI] [PubMed] [Google Scholar]
  29. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Paris S., Béraud-Dufour S., Robineau S., Bigay J., Antonny B., Chabre M., Chardin P. Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno. J Biol Chem. 1997 Aug 29;272(35):22221–22226. doi: 10.1074/jbc.272.35.22221. [DOI] [PubMed] [Google Scholar]
  31. Patki V., Lawe D. C., Corvera S., Virbasius J. V., Chawla A. A functional PtdIns(3)P-binding motif. Nature. 1998 Jul 30;394(6692):433–434. doi: 10.1038/28771. [DOI] [PubMed] [Google Scholar]
  32. Patki V., Virbasius J., Lane W. S., Toh B. H., Shpetner H. S., Corvera S. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7326–7330. doi: 10.1073/pnas.94.14.7326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rameh L. E., Cantley L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999 Mar 26;274(13):8347–8350. doi: 10.1074/jbc.274.13.8347. [DOI] [PubMed] [Google Scholar]
  34. Renault L., Kuhlmann J., Henkel A., Wittinghofer A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell. 2001 Apr 20;105(2):245–255. doi: 10.1016/s0092-8674(01)00315-4. [DOI] [PubMed] [Google Scholar]
  35. Renault L., Nassar N., Vetter I., Becker J., Klebe C., Roth M., Wittinghofer A. The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature. 1998 Mar 5;392(6671):97–101. doi: 10.1038/32204. [DOI] [PubMed] [Google Scholar]
  36. Roberts M. R., Foster G. D., Blundell R. P., Robinson S. W., Kumar A., Draper J., Scott R. Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene. Plant J. 1993 Jan;3(1):111–120. [PubMed] [Google Scholar]
  37. Rosa J. L., Casaroli-Marano R. P., Buckler A. J., Vilaró S., Barbacid M. p619, a giant protein related to the chromosome condensation regulator RCC1, stimulates guanine nucleotide exchange on ARF1 and Rab proteins. EMBO J. 1996 Aug 15;15(16):4262–4273. [PMC free article] [PubMed] [Google Scholar]
  38. Salim K., Bottomley M. J., Querfurth E., Zvelebil M. J., Gout I., Scaife R., Margolis R. L., Gigg R., Smith C. I., Driscoll P. C. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 1996 Nov 15;15(22):6241–6250. [PMC free article] [PubMed] [Google Scholar]
  39. Schultz J., Milpetz F., Bork P., Ponting C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857–5864. doi: 10.1073/pnas.95.11.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stenmark H., Aasland R. FYVE-finger proteins--effectors of an inositol lipid. J Cell Sci. 1999 Dec;112(Pt 23):4175–4183. doi: 10.1242/jcs.112.23.4175. [DOI] [PubMed] [Google Scholar]
  41. Stenmark H., Aasland R., Toh B. H., D'Arrigo A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem. 1996 Sep 27;271(39):24048–24054. doi: 10.1074/jbc.271.39.24048. [DOI] [PubMed] [Google Scholar]
  42. Stevenson J. M., Perera I. Y., Boss W. F. A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem. 1998 Aug 28;273(35):22761–22767. doi: 10.1074/jbc.273.35.22761. [DOI] [PubMed] [Google Scholar]
  43. Stevenson J. M., Perera I. Y., Heilmann I., Persson S., Boss W. F. Inositol signaling and plant growth. Trends Plant Sci. 2000 Jun;5(6):252–258. doi: 10.1016/s1360-1385(00)01652-6. [DOI] [PubMed] [Google Scholar]
  44. Thellin O., Zorzi W., Lakaye B., De Borman B., Coumans B., Hennen G., Grisar T., Igout A., Heinen E. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999 Oct 8;75(2-3):291–295. doi: 10.1016/s0168-1656(99)00163-7. [DOI] [PubMed] [Google Scholar]
  45. Upton C., Buckley J. T. A new family of lipolytic enzymes? Trends Biochem Sci. 1995 May;20(5):178–179. doi: 10.1016/s0968-0004(00)89002-7. [DOI] [PubMed] [Google Scholar]
  46. Wada M., Nakanishi H., Satoh A., Hirano H., Obaishi H., Matsuura Y., Takai Y. Isolation and characterization of a GDP/GTP exchange protein specific for the Rab3 subfamily small G proteins. J Biol Chem. 1997 Feb 14;272(7):3875–3878. doi: 10.1074/jbc.272.7.3875. [DOI] [PubMed] [Google Scholar]
  47. Wurmser A. E., Gary J. D., Emr S. D. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J Biol Chem. 1999 Apr 2;274(14):9129–9132. doi: 10.1074/jbc.274.14.9129. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES